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Abstract— This paper addresses Connectivity-aware Virtual
Network Embedding (CoViNE) problem, which consists in embed-
ding a virtual network (VN) on a substrate network while
ensuring VN connectivity (without any bandwidth guarantee)
against multiple substrate link failures. CoViNE provides a
weaker form of survivability incurring less resource overhead
than traditional VN survivability models. To optimally solve
CoViNE, we present an Integer Linear Program (ILP), namely
CoViNE-opt. CoViNE-opt enumerates an exponential number of
edge-cuts in a VN severely limiting its scalability. Therefore,
we decompose CoViNE into three sub-problems: i) augmenting a
VN with virtual links to provide necessary connectivity, ii) iden-
tifying the virtual links that should be embedded disjointly, and
iii) computing a VN embedding while satisfying the disjointness
constraints. We introduce conflicting set abstraction that allows
to address sub-problems (i) and (ii) without enumerating all the
edge-cuts of a VN. We propose two novel solutions to CoViNE
leveraging conflicting set, namely CoViNE-ILP and CoViNE-fast.
CoViNE-ILP uses a heuristic algorithm to address sub-problems
(i) and (ii), while an ILP is used for sub-problem (iii). In contrast,
CoViNE-fast uses heuristics for solving all three sub-problems.
Through simulation, we evaluate the optimality and scalability
of our solutions and demonstrate a failure restoration use-case
enabled by CoViNE.

Index Terms— Computer network reliability, fault tolerance,
redundancy.

I. INTRODUCTION

PERCEIVED as a key enabling technology for 5G mobile
networks [1], [2], Network Virtualization (NV) (aka

Network Slicing) enables an Infrastructure Provider (InP) to
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better utilize Substrate Network (SN) resources by embed-
ding Virtual Networks (VNs) in support of services with
differing requirements from multiple Service Providers (SPs).
NV allows the co-existence of heterogeneous services from
different SPs on the same infrastructure and opens new revenue
streams for the InP [3]. However, benefits from NV come
at additional resource management challenges for an InP.
A well studied resource management challenge in NV is to
efficiently map the virtual nodes and virtual links from an SP’s
VN request onto substrate nodes and paths, respectively, also
known as the Virtual Network Embedding (VNE) problem [4].

NV operates in a dynamic environment where substrate
resources may fail and multiple concurrent failures is not a
rare event [5]. Surviving failures is of paramount importance,
since a single failure in an SN may result in multiple failures in
the embedded VNs. Finding a VN embedding that can survive
failures in an SN is known as the Survivable Virtual Network
Embedding (SVNE) problem [6]. The majority of the works
on SVNE focus on link failures, as they occur more frequently
than node failures [7]. SVNE approaches, in general, allocate
redundant resources for each (or selected) virtual link(s)
and node(s), either pro-actively while computing the embed-
ding or reactively after a failure occurs [8]. Traditionally,
proactive SVNE approaches focus on guaranteeing virtual link
demand in the presence of failure(s). These approaches assume
that InPs handle substrate failures by provisioning redundant
backup resources to guarantee virtual links’ bandwidth in
the event of failures, which in turn incurs additional cost to
SPs. Backup resource requirement can increase substantially
in a multiple (e.g., k) link failure scenario because of the
combinatorial number of k link failure possibilities.

In this paper, we focus on a different form of surviv-
ability than traditional proactive SVNE, namely Connectivty-
aware Virtual Network Embedding (CoViNE). Our goal is to
find a VN embedding that remains connected (without any
bandwidth guarantee) in the presence of multiple substrate
link failures. Guaranteeing connectivity in the VN embedding
will incur less resource overhead and reduced cost of leasing
resources for a VN, however, providing a weaker form of
survivability. This survivability model is well-suited for VNs
that carry best-effort traffic and can tolerate disruption during
failure restoration. Upon failures, the affected VN traffic can
be rerouted to alternate paths following any predefined policy,
e.g., customer priority. This survivability model also allows to
delegate failure handling responsibility to an SP, which can
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then use a Software Defined Network (SDN) controller to
employ their own network design and restoration techniques
instead of simply relying on the InP [9]–[11].

Although our focus is NV, CoViNE is equally applicable to
IP-over-Wavelength-division multiplexing (WDM) networks.
The problem of ensuring IP network connectivity in the
presence of underlying WDM link failure(s) is known as link
survivable mapping. Two variations of the link survivability
problem have been studied in IP-over-WDM literature [12]:
i) weakly link survivable mapping (WLSM) ensures only
IP-layer connectivity; ii) strongly link survivable mapping
guarantees both connectivity and bandwidth of the failed
IP link(s) against WDM link failures. However, a major differ-
ence between VNE and mapping in IP-over-WDM networks
is that IP routers are attached to fixed locations in the later,
whereas the placement of virtual nodes is an outcome of
VNE algorithm in the former. Therefore, solutions for IP-over-
WDM networks such as [13]–[15] cannot be directly applied
to CoViNE. As a matter of fact, WLSM problem is merely a
special case of CoViNE.

Solving CoViNE under k substrate link failures requires sat-
isfying the following necessary and sufficient condition [16]: at
least one link in each edge-cut of a VN must remain connected
after any k substrate link failures. Given that there can be
an exponential number of edge-cuts in a VN and also the
combinatorial number of k substrate link failure possibilities,
the aforementioned condition becomes impractical to be sat-
isfied even for small substrate networks [16]. Alternatively,
the same connectivity guarantee of a VN under k substrate
link failures can be achieved by the following two necessary
conditions: i) the VN must be k + 1 edge connected, and
ii) at least k + 1 edge-disjoint paths must exist between
every pair of virtual nodes in the embedding of the VN on
the SN. The first condition can be satisfied by augmenting the
VN with additional virtual links if needed [14], [17]. However,
the number of augmented virtual links should be minimized
since these augmented links consume substrate resources dur-
ing VNE. A naive way to satisfy the second condition is to
embed all the virtual links of a k + 1 edge connected VN on
disjoint paths in the SN at the cost of increased resource
requirements for embedding virtual links [18]. However, as we
demonstrate in Section III-D, not all virtual links need to be
embedded on disjoint substrate paths to satisfy the second
condition. Therefore, a sought-after solution to CoViNE should
simultaneously optimize the number of augmented virtual
links and the disjointness constraints in order to minimize the
cost of VN embedding.

Optimally solving CoViNE for k substrate link failures
is intractable since it entails to jointly optimize VN aug-
mentation, disjointness constraints computation, and embed-
ding of the augmented VN while satisfying the disjointness
and capacity constraints. As each of these problems,
when solved independently, is either NP-complete [19] or
NP-Hard [4], [18], addressing them simultaneously exacer-
bates the complexity of CoViNE. This challenging problem has
not been well studied in the NV literature, although WLSM
problem (a special case of CoViNE) has received significant
attention in the IP-over-WDM literature. The majority of

the solutions to WLSM have overlooked the critical step of
augmentation, assuming that input VNs have the necessary
edge-connectivity [16], [20]–[22], which is not always the
case. In addition, a significant body of existing literature on
WLSM focus on single substrate link failure [15], [20], [21].
Solutions for multiple substrate link failures either fall short
in dealing with arbitrary VN topologies [17], or consider
only a special case, i.e., Shared Risk Link Group (SRLG)
failures [16], [22]. The authors in [14] address a WLSM
problem that considers both augmentation and multiple link
failures. However, the heuristic solution in [14] requires a large
number of virtual links to be embedded disjointly, possibly
imposing an unsatisfiable number of disjointness constraints.
To overcome these limitations, in this paper, we present novel
solutions to CoViNE that can embed an arbitrary VN topol-
ogy on an SN, while guaranteeing VN connectivity against
k substrate link failures and minimizing substrate resource
consumption. Our solutions, if needed, augment a VN with
minimal number of virtual links and preserve the topological
structure of the VN to remain transparent to the SP operating
the VN. Specifically, we make the following contributions,
which build on our earlier study presented in [23].

First, we present CoViNE, an alternate survivability model
for VNE, which embeds a VN on an SN subject to the con-
straint that the VN remains connected under k substrate link
failures, i.e., at least one working path exists between every
pair of virtual nodes when up to k substrate links fail. While
doing so, CoViNE minimizes the bandwidth provisioning cost
in the SN. The survivability model proposed by CoViNE
significantly reduces backup resource requirement compared
to traditional survivability approaches in the SVNE literature.

Second, we propose three novel solutions to CoViNE:

A. CoViNE-opt

An Integer Linear Program (ILP) formulation that jointly
optimizes VN augmentation, disjointness constraints compu-
tation, and embedding of the augmented VN to optimally solve
CoViNE. CoViNE-opt has an exponential number of variables
and constraints that severely limits its scalability. To scale to
larger problem instances, we decompose CoViNE into three
sub-problems: (i) augmenting the VN with zero or more
virtual links to make it k + 1-edge connected; (ii) com-
puting the set of virtual links to be embedded disjointly
for ensuring connectivity against k substrate link failures;
and (iii) embedding the VN while satisfying the aforemen-
tioned disjointness constraints. The following two approaches
(i.e., CoViNE-ILP and CoViNE-fast) sequentially solve all the
sub-problems of CoViNE in a more scalable manner, however,
without guaranteeing an optimal solution.

B. CoViNE-ILP

Employs a heuristic that solves sub-problems (i) and (ii) in
polynomial time. This heuristic leverages conflicting set
abstraction resulting from a theoretical analysis of CoViNE.
The conflicting set abstraction allows to generate a polynomial
number of variables and constraints to be used by an ILP for
solving sub-problem (iii). The complexity of this ILP limits
its applicability to substrate networks of few hundred nodes.
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C. CoViNE-fast

Uses heuristics for all three sub-problems of CoViNE to
scale to larger problem instances.

Finally, we perform extensive simulations to evaluate the
optimality and scalability of the proposed solutions under
single and double substrate link failures. We restrict our
simulations to one and two link failure cases since the
probability of more than two simultaneous link failures is
extremely low [7], [24]. We also compare our solutions
with a VNE approach that does not guarantee VN connec-
tivity upon failures [4]. Although our sequential solutions
(i.e., CoViNE-ILP and CoViNE-fast) do not guarantee opti-
mality, simulation results show that they perform close to
CoViNE-opt, and scale to larger problem instances. Finally,
we demonstrate how CoViNE can enable a VN operator
to recover from link failures without depending on the
SN provider.

The rest of this paper is organized as follows. We discuss
the related literature in Section II. In Section III, we present
the system model, CoViNE problem statement, definitions,
and assumptions. An ILP formulation for optimally solving
CoViNE is presented in Section IV. The theoretical analysis of
CoViNE is laid in Section V. Then, we present a heuristic algo-
rithm for VN augmentation and computing disjointness con-
straints in Section VI-A, followed by an ILP formulation and
a heuristic algorithm for CoViNE embedding in Section VI-B
and in Section VI-C, respectively. Evaluation results for
CoViNE are presented in Section VII. Finally, we conclude
in Section VIII with some future research directions.

II. RELATED WORKS

Survivability in NV and IP-over-WDM networks has been
well studied over the past years [6], [15], [17], [20], [25]–[28].
We discuss the most prominent approaches addressing surviv-
ability from both NV (§ II-A) and IP-over-WDM literature
(§ II-B), and contrast them with our solutions for CoViNE.

A. Survivable Virtual Network Embedding (SVNE)

Rahman et al., first formulated the SVNE for single sub-
strate link failure as a mixed integer liner program [6].
Subsequent research works have addressed different aspects of
SVNE such as substrate node failures [29]–[32] and link fail-
ures [25], [27], [33], [34]. SVNE approaches for node failures
can be broadly classified into two groups. The first group of
works proposed to pro-actively provision dedicated or shared
resources in the SN to survive single or multiple node fail-
ures [29], [30], [32]. The second group proposed to reac-
tively compute VN embedding after one or more nodes have
failed in the SN [31], [35], [36]. Another stream of SVNE
research has focused on ensuring VN survivability during
one or more substrate link failures, both pro-actively during
VN embedding [25], [27], [28], [34] and reactively after a
failure [33], [37]. In contrast, we address multiple substrate
link failures and propose a different form of survivability
instead of guaranteeing full bandwidth of the virtual links
during failures as considered in the SVNE approaches.

Recently, there has been a growing interest in designing
connectivity-guaranteed VNE schemes [16], [38]. For instance,

the proposal from Zhu et al. [38] ensures that the unaffected
part of a VN remains connected under a single substrate node
failure to continue the services provided by the VN. They
formulate the problem as an ILP and develop an ant colony
optimization algorithm to obtain a local optimal solution.
Hmaity et al. [39] distinguish between network connectivity
and content connectivity and focus on providing content
connectivity against double link failures. Their approach guar-
antees connectivity in a VN after single substrate link failure
and maintains content connectivity in the presence of double
substrate link failures. They argue that guaranteeing content
connectivity may require lower amount of resources compared
to network connectivity, and can be the sought after choice for
Content Delivery Networks. Zhou et al. [16] propose to use
cross-layer spanning trees to design survivable cloud networks
against SRLG failure. Each spanning tree protects one SRLG
by mapping the virtual links in the spanning tree in the paths
that avoid the substrate links in the SRLG. They also discuss
a way to extend their SRLG based solution to k substrate link
failures. However, this solution needs a combinatorial number
of spanning trees to protect in order to survive arbitrary k link
failures. In contrast, our solution computes only one spanning
tree of the VN even to survive any k substrate link failures.

B. Survivability in IP-over-WDM Network

Modiano et al. [20] presented an ILP formulation for
survivable link routing of an IP network on WDM SN in the
presence of a WDM link failure. Their formulation explores
exponential number of edge-cuts in the IP network and ensures
that the IP links belonging to a edge-cut are routed on at
least two disjoint WDM paths. This approach does not scale
well as the number of edge-cuts grows exponentially with the
size of the IP network. Todimala et al. [22] have proposed an
improved ILP formulation by identifying polynomial number
of primary cuts in planar and hierarchical planar cyclic graphs
representing IP networks. Their formulation computes the
survivable routing of these sub-classes of IP networks against
single node or SRLG failure(s). However, this formulation
is not applicable to non-planar IP topologies and arbitrary
failure scenarios. Lee et al. [40] extended the Max-flow min-
cut theorem to multi-layer networks and proposed approxi-
mation algorithms for survivable IP network mapping on an
WDM SN, while maximizing the minimum cross layer cut.
Zhou et al. [41] identified four cross-layer metrics and
presented mixed-integer linear programs (MILPs) to deter-
mine a mapping that maximizes one of the defined metrics.
They also provided an MILP formulation for augmenting the
IP topology. A major drawback of these MILP-based
approaches is that they do not scale well with VN or SN size,
because of the inherent complexity of the LP-solvers.

Several heuristic based approaches have been proposed
for survivable IP link mapping in large WDM networks.
Kurant et al. [13], [17] proposed SMART, a framework for
finding survivable mapping of an IP network by repeatedly
picking sub-graph (e.g., cycles) of the network and mapping
the IP links in the sub-graph on disjoint paths in the WDM SN.
SMART can ensure connectivity under double WDM link
failures for IP networks having a few special structures, thus
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limiting its applicability. An extension to SMART has been
proposed in [21] that exploits the duality between circuits
and cuts in the graph representing an IP topology. In [42],
Thulasiraman et al. remove some of the shortcomings of
the dual framework of SMART by using generalized circuit
and cutset cover sequences. In another extension of SMART,
Javed et al. [43] used the concept of randomized rounding
discussed in [44] to find disjoint WDM paths for the IP links
that achieved higher success rate than SMART. Zhou et al. [15]
proposed an algorithm that identifies a set of spanning trees
of an IP network and computes a shortest-path based routing
of the IP links such that at least one of the spanning trees
remains unaffected after a WDM link failure. Another school
of thought is to compute restoration path for each IP link
in a way that the IP link and its restoration path are not
affetced by the same substrate link failures [5], [12]. However,
these approaches require to know the set of substrate links
that will potentially fail together. In contrast, our solution is
generic, i.e., does not assume any specific property of the
IP network or the WDM SN, and can ensure connectivity in
the presence of multiple WDM link failures.

C. Virtual Link Augmentation

IP link augmentation strategies such as [15], [45], [46] to
survive WDM link failures primarily focus on single link
failure scenarios and cannot be generalized to multiple failures.
Zhou et al., propose to augment logical VLinks between
arbitrary pairs of VNodes [21]. In contrast, we propose to
perform augmentation only between pairs of adjacent VNodes
not to alter the VN topology. Thulasiraman et al., propose
an augmentation strategy for ensuring survivability under k
WDM link failures [14]. They propose to augment IP links
until a complete subgraph of k +2 nodes in the IP network is
constructed and the remaining nodes are k+1 edge connected
to the subgraph. Their solution maps all the IP links in the
complete subgraph of k+2 nodes onto mutually disjoint WDM
paths. To survive k link failures, this approach requires higher
number of IP links to be augmented and more disjointness
constraints to be satisfied than those of our approach.

D. Complexity of the VNE Problem

Optimally solving the general case of the VNE problem
without any survivability requirements, is at least as hard
as the NP-Hard Multi-commodity Unsplittable Flow Prob-
lem (MCUFP) [47] when the source and destination of the
flows are unknown. The best known approximation bound
for the MCUFP with known sources and destinations is
(2 + �) for very simple classes of graphs, namely, line and
cycle graphs [48]. A Linear Programming relaxation based
algorithm for unsplittable flows on trees has been proposed
in [49], however, the approximation ratio is a logarithmic
function of the number of nodes. In reality, SNs are more
densely connected than line and cycle graphs, and trees.
Finding a constant factor approximation algorithm for general
graphs still remains an open problem [50]. Moreover, line
graphs and trees are 1-edge connected, therefore, they are not
suitable for deploying SNs to guarantee VN connectivity under
k ≥ 1 link failures. Finally, a more recent study has proved that

TABLE I

NOTATION TABLE

the general case of the VNE problem with capacity constraints
on the links is NP-complete and cannot be approximated
under any objective unless P = NP [51].

III. PRELIMINARIES

The subsequent sections build upon the background, defin-
itions, and assumptions presented in this section. Table I lists
all the major notations used in the rest of this paper.

A. System Model

We represent an SN as an undirected graph, G = (V, E),
where V and E denote the set of Substrate Nodes (SNodes)
and Substrate Links (SLinks), respectively. The set of neigh-
bors of an SNode u ∈ V is denoted by N (u). Bandwidth
capacity of an SLink (u, v) ∈ E is buv , while the cost of
allocating one unit of bandwidth in (u, v) is Cuv . Similarly,
a VN is represented as an undirected graph Ḡ = (V̄ , Ē),
where V̄ and Ē denote the set of Virtual Nodes (VNodes) and
Virtual Links (VLinks), respectively. The set of neighbors of
a VNode v̄ ∈ V̄ is denoted by N (v̄). Each VLink (ū, v̄) ∈ Ē
has bandwidth requirement būv̄. Each VNode ū ∈ V̄ has a
location constraint, L(ū) ⊆ V , that denotes the set of SNodes
where ū can be embedded. We represent the location constraint
L(ū) ⊆ V of ū ∈ V̄ with the binary variable �ūu that is set
to 1 if ū ∈ V̄ can be mapped to u ∈ V , 0 otherwise.

B. CoViNE Problem Statement

Given an SN G = (V, E), a VN Ḡ = (V̄ , Ē), and location
constraints L(ū), ∀ū ∈ V̄ , CoViNE finds an embedding that

• provides a function f : V̄ → V to map every VNode
ū ∈ V̄ to exactly one SNode u ∈ V while satisfying the
location constraint and incurring no overlap, i.e., ∀ū, v̄ ∈
V̄ ∧ū �= v̄ =⇒ f(ū) �= f(v̄) and ∀ū ∈ V̄ f(ū) ∈ L(ū),

Authorized licensed use limited to: University of Waterloo. Downloaded on February 16,2020 at 04:55:15 UTC from IEEE Xplore.  Restrictions apply. 



SHAHRIAR et al.: VNE WITH GUARANTEED CONNECTIVITY UNDER MULTIPLE SUBSTRATE LINK FAILURES 1029

• provides a function g : Ē → 2E to map each VLink
(ū, v̄) ∈ Ē to a substrate path Qf(ū)f(v̄) with sufficient
bandwidth to satisfy the VLink demand būv̄,

• ensures the connectivity in Ḡ in the presence of up to k
SLink failures in G,

• minimizes the total cost of embedding in terms of sub-
strate bandwidth consumption as defined by the following∑

∀(ū,v̄)∈Ē

∑
∀(u,v)∈Qf(ū)f(v̄)

Cuv × būv̄ (1)

C. Definitions and Design Choices

Definition 1 (Edge-Cut): An edge-cut C̄i ⊂ Ē of a VN Ḡ
is the set of VLinks that connect the VNodes in an non-empty
set S̄ ⊂ V̄ to the VNodes in V̄ \ S̄ and the removal of the
VLinks in C̄i partitions the VN. Let C̄Ḡ be the set of all edge-
cuts in the VN Ḡ, C̄Ḡ = {C̄1, C̄2, . . . , C̄m}. Since the number
of non-empty proper subsets (i.e., S̄ �= φ ∧ S̄ �= V̄ ) of V̄ is
2V̄ − 2, we have m = 2V̄ − 2. Let |C̄i| denote the number of
VLinks in the edge-cut C̄i.

A VN embedding remains connected during k SLink fail-
ures if the following two necessary conditions are met: i) the
VN is k + 1 edge-connected following the definition of k + 1
edge-connected graphs, implying that the size of each edge-
cut is at least k +1, ∀Ci ∈ C̄Ḡ, |C̄i| >= k +1, ii) the VLinks
in each edge-cut Ci are embedded on at least k + 1 edge-
disjoint paths in the SN. This can be trivially proved since the
failure of k SLinks can impact at most k edge-disjoint paths
in the SN, leading to at most k VLink failures from an edge-
cut in a VN leaving at least one VLink to ensure connectivity.
However, if the given VN Ḡ lacks k+1 connectivity, we need
to augment Ḡ with additional VLinks. This augmentation can
be done in two ways: i) augment VLinks between arbitrary
pair of VNodes, which is a well studied problem [45], [46];
ii) augment parallel VLinks between already adjacent VNodes
in Ḡ [12], [15], [21]. Arbitrary augmentation can ensure k+1
edge connectivity by introducing minimal number of VLinks,
however, this approach will change the input VN topology.
Although parallel VLink augmentation may not yield minimal
resource usage, it does not alter the input VN topology. From
a VN operator perspective, it is very important to preserve its
VN topology. Hence, we opt for the second alternative, i.e.,
augmenting a VN with only parallel VLinks.

Definition 2 (k-protected VN): A k-protected VN, Ĝ =
(V̂ , Ê), is a VN that becomes k + 1 edge connected after
augmenting the minimum number of parallel VLinks to a VN,
Ḡ = (V̄ , Ē). The k-th parallel VLink between ū and v̄ is
denoted by (ū, v̄)k , where (ū, v̄)0 or simply (ū, v̄) represents
the input VLink between ū and v̄. Here, V̂ = V̄ and Ê =
Ē ∪ Ẽ, where Ẽ = {(ū, v̄)k|(ū, v̄) ∈ Ē, k ∈ K and k ≥ 1} is
the set of augmented parallel VLinks.

Definition 3 (k-protected Component): A k-protected com-
ponent of a graph Ḡ is a multi-graph Ĝk = (V̂k, Êk), where
V̂k ⊆ V̄ , Êk = Ēk ∪ Ẽk, Ēk ⊆ Ē, Ẽk ⊆ Ẽ and Ẽk is a set of
parallel VLinks augmented in such a way that simultaneous
removal of k arbitrary VLinks from Ĝk will not partition Ĝk.

Determining the bandwidth of the parallel VLinks as well
as the amount of spare bandwidth to be reserved for the input

Fig. 1. CoViNE examples.

VLinks (in Ē) to survive failures is a separate problem of its
own, and has been studied in [12], [52]–[54]. Here, we assume
that the bandwidth of a parallel VLink will be the same as the
bandwidth of the input VLink parallel to it in order to salvage
full bandwidth of the VLink upon failures. In the case that
a parallel VLink has lower bandwidth than the input VLink,
the amount of restored bandwidth will be decreased.

D. CoViNE Example

We illustrate CoViNE examples for single and double
failure scenarios in Fig. 1(a) and Fig. 1(b), respectively.
In these examples, xyz is the VN and ABCD is the SN.
The arrow from a VNode to an SNode denotes node mapping
and the dotted lines between SNodes denote link mapping.
To survive single SLink failure (k = 1), the VN must be
2 edge-connected. Since xyz is already 2 edge-connected,
no augmentation is required. Fig. 1(a) shows an un-survivable
embedding (on the left) and a survivable embedding (on the
right) of xyz. They differ in satisfying disjointness constraints.
The embedding on the left satisfies no disjointness constraint,
hence the VLinks of an edge-cut {(x, y), (y, z)} share an
SLink (A, B). Upon the failure of (A, B), both VLinks fail,
and VNode y is disconnected from the rest of the VN. The
embedding on the right adheres to the disjointness constraints,
hence no SLinks are shared. Even though SLink (A, B) and
correspondingly VLink (x, y) fail, the VN remains connected.

To survive double link failures (Fig. 1(b)), i.e., for (k = 2),
the VN should be 3 edge-connected, which is not the case
for VN xyz. Due to such lack of edge-connectivity, even an
edge-disjoint embedding of all the VLinks (the embedding on
the left) cannot survive two SLink failures. Hence, we trans-
form the VN into a 2-protected one by augmenting VLinks
(dashed VLinks in the figure) and embedding the result-
ing VN adhering to the disjointedness constraints as shown
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on the right. Note that, for a survivable embedding of the
2-protected VN, some SLinks can be shared (e.g., (A, D))
among the mappings of some VLinks since not all the VLinks
need to be embedded on mutually disjoint paths.

IV. OPTIMAL SOLUTION TO COVINE

In this section, we present CoViNE-opt, an ILP formulation
for optimally solving CoViNE. CoViNE-opt transforms an
input VN Ḡ to a k-protected VN Ĝ by augmenting parallel
VLinks, and minimizes the total cost of provisioning band-
width for the VLinks of Ĝ on an SN G, while ensuring Ĝ’s
connectivity in the presence of k SLink failures.

A. Decision Variables

Recall from Section III-C that Ḡ needs to be augmented
with additional VLinks if Ḡ is not already k + 1 edge-
connected. This implies that we must add parallel VLinks
to the edge-cuts in Ḡ whose sizes are less than k + 1, thus
ensuring that there are no edge-cuts in Ḡ with size less
than k + 1. Determining which parallel VLinks should be
added to Ḡ is non-trivial as augmenting one VLink parallel
to (ū, v̄) may increase the sizes of all edge-cuts that contain
(ū, v̄), resulting in a combinatorial decision making problem.
To optimally decide which parallel VLinks are augmented,
we introduce the following decision variable:

aūv̄
k =

⎧⎪⎨
⎪⎩

1 if k-th VLink between ū and v̄ s.t. (ū, v̄) ∈ Ē

is augmented,

0 otherwise.

Note that, aūv̄
0 denotes the input VLink between ū and v̄.

Therefore, ∀(ū, v̄) ∈ Ē, aūv̄
0 = 1. Once a VLink

(ū, v̄)k s.t. (ū, v̄) ∈ Ē ∧ k ∈ K ∧ k �= 0 is augmented
by CoViNE-opt, (ū, v̄)k is included in all the edge-cuts that
contain (ū, v̄). We denote the set of VLinks in C̄i and all the
parallel VLinks augmented to the VLinks in C̄i as C̄i ∪ C̄k

i .
Mathematically, C̄i ∪ C̄k

i = {{(ū, v̄)0 s.t. (ū, v̄) ∈ C̄i} ∪
{(ū, v̄)k s.t. (ū, v̄) ∈ C̄i ∧ k ∈ K ∧ k �= 0 ∧ aūv̄

k = 1}}.
A VLink is mapped to a set of SLinks forming a path in

the SN. In this ILP formulation, we represent a bidirectional
SLink by two unidirectional SLinks in opposite directions.
We represent the mapping between (ū, v̄)k, the k-th VLink
between adjacent VNodes ū and v̄ and an SLink (u, v) ∈ E
using the following decision variable:

xūv̄k
uv =

⎧⎪⎨
⎪⎩

1 if (ū, v̄)k s.t. (ū, v̄) ∈ Ē and k ∈ K is

mapped to (u, v) ∈ E,

0 otherwise.

The following decision variable represents the mapping
between VNodes and SNodes:

yūu =

{
1 if ū ∈ V̄ is mapped to u ∈ V,

0 otherwise.

To guarantee that a VN remains connected (i.e., at least one
path exists between any pair of VNodes) during any combi-
nation of k SLink failures, one of the necessary conditions
discussed in Section § III-C is that for any edge-cut C̄i ∈ CḠ,

the VLinks in C̄i ∪ C̄k
i are embedded on at least k + 1 edge-

disjoint paths in the SN. CoViNE-opt enforces this condition
by partitioning the set of VLinks in each C̄i ∪ C̄k

i into two
mutually exclusive groups. The first group, denoted as DC̄i

,
will contain the VLinks that cannot share an SLink in their
mappings to ensure the existence of at least k+1 edge-disjoint
paths among the mappings of the VLinks in C̄i ∪ C̄k

i . Hence,
the size of DC̄i

must be at least k +1. The second group will
contain the rest of the VLinks in C̄i∪ C̄k

i that are not in DC̄i
.

The following decision variable decides the assignment of a
VLink in C̄i ∪ C̄k

i to DC̄i
:

dūv̄k
C̄i

=

⎧⎪⎨
⎪⎩

1 if (ū, v̄)k s.t. (ū, v̄) ∈ C̄i and k ∈ K

belongs to DC̄i
,

0 otherwise.

B. Constraints

1) Augmentation Constraints: Parallel VLinks are aug-
mented to ensure that there is no edge-cut in the VN with less
than k + 1 VLinks. (2) ensures that the size of each edge-cut
is at least k + 1 after augmentation. Note that if CoViNE-opt
decides to augment a parallel VLink, the augmented VLink
must also be mapped to a path in the SN (see § IV-B.2),
increasing the cost of embedding. Since the objective of
CoViNE-opt is a minimization function (see § IV-C), CoViNE-
opt will augment the minimum number of parallel VLinks
despite not having a strict equality in (2).

∀C̄i ∈ C̄Ḡ s.t. |C̄i| < k + 1 :
∑

∀(ū,v̄)∈C̄i

∑
k∈K

aūv̄
k >= k + 1

(2)

2) VLink Mapping Constraints: VLinks are mapped to
substrate paths following a Multi-commodity Unsplittable
Flow formulation [55]. Bandwidth conservation is ensured
by (3) which enforces that an SLink is not assigned VLink
demands that exceed the SLink’s bandwidth capacity. Then,
(4) ensures flow conservation by making sure that for each
input (aūv̄

0 , ∀(ū, v̄) ∈ Ē) and augmented (aūv̄
k = 1 s.t. (ū, v̄) ∈

Ē ∧ k ∈ K ∧ k �= 0) VLink, the in-flow and out-flow of each
SNode is equal except at the SNodes where the endpoints of a
VLink are mapped. Since the decision of VLink augmentation
is not known in advance, the right hand side of (4) is multiplied
by aūv̄

k , yielding a quadratic constraint.

∀(u, v) ∈ E :
∑

∀(ū,v̄)∈Ē

∑
∀k∈K

xūv̄k
uv × būv̄ ≤ buv (3)

∀(ū, v̄) ∈ Ē, ∀k ∈ K, ∀u ∈ V :∑
∀v∈N (u)

(xūv̄k
uv − xūv̄k

vu ) = aūv̄
k × (yūu − yv̄u) (4)

We take the following steps to linearize (4). First, we introduce
two binary variables wūv̄k

u and zūv̄k
u such that:

∀(ū, v̄) ∈ Ē, ∀k ∈ K, ∀u ∈ V : wūv̄k
u ≤ aūv̄

k (5)

∀(ū, v̄) ∈ Ē, ∀k ∈ K, ∀u ∈ V : wūv̄k
u ≤ yūu (6)

∀(ū, v̄) ∈ Ē, ∀k ∈ K, ∀u ∈ V : wūv̄k
u ≥ aūv̄

k + yūu − 1 (7)

∀(ū, v̄) ∈ Ē, ∀k ∈ K, ∀u ∈ V : zūv̄k
u ≤ aūv̄

k (8)
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∀(ū, v̄) ∈ Ē, ∀k ∈ K, ∀u ∈ V : zūv̄k
u ≤ yv̄u (9)

∀(ū, v̄) ∈ Ē, ∀k ∈ K, ∀u ∈ V : zūv̄k
u ≥ aūv̄

k + yv̄u − 1 (10)

Then, we rewrite (4) in a linear form using the newly intro-
duced variables as follows:

∀(ū, v̄) ∈ Ē, ∀k ∈ K, ∀u ∈ V :∑
∀v∈N (u)

(xūv̄k
uv − xūv̄k

vu ) = wūv̄k
u − zūv̄k

u (11)

3) Disjointedness Constraints: (12) ensures that for each
edge-cut C̄i, the disjoint group DC̄i

contains at least k + 1
VLinks from C̄i ∪ C̄k

i . To prevent the inclusion of a non-
augmented VLink into DC̄i

, we multiply dūv̄k
C̄i

by aūv̄
k in (12).

An SLink (u, v) can be used at most once in the mappings
of the VLinks in C̄i ∪ C̄k

i that are assigned to DC̄i
to ensure

their edge-disjoint embedding. We enforce this by (13). Since
both (12) and (13) are quadratic, we linearize them using the
same technique discussed for (4).

∀C̄i ∈ C̄Ḡ : (
∑

∀(ū,v̄)∈C̄i

∑
k∈K

dūv̄k
C̄i
× aūv̄

k ) ≥ k + 1 (12)

∀(u, v) ∈ E, ∀C̄i ∈ C̄Ḡ :∑
∀(ū,v̄)∈C̄i

∑
∀k∈K

dūv̄k
C̄i
× (xūv̄k

uv + xūv̄k
vu ) ≤ 1 (13)

4) VNode Mapping Constraints: (14) ensures that VNode
mapping follows the given location constraint. (15) ensures
that a VNode is mapped to exactly one SNode. Finally, (16)
ensures that an SNode does not host more than one VNode
from a VN. However, an SNode can host multiple VNodes
from different VNs.

∀ū ∈ V̄ , ∀u ∈ V : yūu ≤ �ūu (14)

∀ū ∈ V̄ :
∑
u∈V

yūu = 1 (15)

∀u ∈ V :
∑
ū∈V̄

yūu ≤ 1 (16)

C. Objective Function

The objective of CoViNE-opt is to minimize the bandwidth
provisioning cost over all the SLinks for embedding all the
original and augmented VLinks of a VN, Ḡ, subject to the aug-
mentation constraints (§ IV-B.1), VLink mapping constraints
(§ IV-B.2), disjointness constraints (§ IV-B.3), and VNode
mapping constraints (§ IV-B.4). Given that Cuv is the cost
of allocating unit bandwidth on SLink (u, v) ∈ E, we have
the following objective function for CoViNE-opt:

minimize

⎛
⎝ ∑

∀(ū,v̄)∈Ē

∑
∀k∈K

∑
∀(u,v)∈E

xūv̄k
uv × Cuv × būv̄

⎞
⎠ (17)

D. Complexity Analysis

Rost et al., have shown that the VNE problem with
capacity constraints on the links, i.e., solving CoViNE-opt
without the augmentation constraint (2) and disjointness
constraints (12) - (13), is NP-complete and cannot be approx-
imated under any objective unless P = NP [51]. Further-
more, when we include the augmentation and disjointedness

constraints, CoViNE-opt becomes even more computation-
ally intractable. The reason is that CoViNE-opt generates an
exponential number of variables for dūv̄k

C̄i
and an exponential

number of constraints for (2), (12), and (13) since the number
of edge-cuts in a VN is O(2|V̄ |). For instance, total number
of binary variables for dūv̄k

C̄i
is |Ē| × k × (2|V̄ | − 2) and total

number of constraints for (13) is |E| × (2|V̄ | − 2). In the
worst case, all binary vectors have to be enumerated and
all the constraints need to be explicitly checked for each of
the enumeration, yielding the time complexity of O((|E| ×
(2|V̄ | − 2)) × 2(|Ē|×k×(2|V̄ |−2))). To reduce the size of the
problem, we decompose the joint optimization, and separate
augmentation and disjointness constraints computation from
embedding as presented in the subsequent sections. Note that
by decomposing CoViNE-opt into sub-problems and solving
them sequentially may yield sub-optimal solution.

V. THEORETICAL ANALYSIS FOR k LINK SURVIVABILITY

In this section, we first devise an efficient mechanism to
compute disjointness constraints of a VN assuming that the
VN is k-protected (§ V-A). We then extend this mechanism
to transform an arbitrary VN to a k-protected VN (§ V-B).

A. Disjointness Constraints Computation

As discussed in § IV-D, there are exponential number of
edge-cuts in Ĝ and combinatorial number of ways to assign
VLinks from each edge-cut to its k + 1 disjoint groups.
To reduce the exponential number of constraints, we first
define the disjointedness relationship between the VLinks of
Ĝ irrespective of the edge-cuts as follows.

Definition 4 (Conflicting VLinks): Two VLinks are con-
sidered conflicting if they must be embedded on edge-
disjoint paths in the SN to ensure the VN remains connected
(i.e., at least one path exists between any pair of VNodes) in
the presence of k SLink failures.

Definition 5 (Conflicting Set): A conflicting set of a VLink
(û, v̂)k, denoted by χûv̂k, is the set of VLinks in Ê those are
conflicting with (û, v̂)k . A conflicting set of a VN Ĝ = (V̂ , Ê),
denoted by χĜ, is defined as χĜ = {χûv̂k|∀(û, v̂)k ∈ Ê}.

A conflicting set of Ĝ imposes disjointedness constraints
on VLink embedding of Ĝ. The larger the size of conflicting
sets of the VLinks in Ĝ, the higher the number of dis-
jointedness constraints to be satisfied, and hence the longer
becomes the substrate paths used for VLink embedding. This
increased number of disjointedness constraints can have a
twofold impact on embedding. First, it can increase the cost
of embedding due to the longer substrate paths. Second, and
more importantly, it can lead to infeasible solutions due to the
lack of adequate edge-disjoint paths in a moderately dense SN.
Therefore, we define the notion of minimal conflicting set of Ĝ
that ensures k + 1 edge connectivity of Ĝ after embedding,
while minimizing the requirement of having disjoint paths in
the embedding. This can be obtained by finding the minimum
number of partitions of the VLinks of Ê such that the VLinks
in a partition are not conflicting with one another. Since
VLinks in the same partition do not impose any disjointedness
constraint, minimizing the number of partitions will yield
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a minimal conflicting set. However, partitioning the VLinks
to yield a minimal conflicting set is non-trivial as per the
following theorem.

Theorem 1: Computing a minimal conflicting set of a VN is
NP-complete.

Proof: This problem is clearly in NP because we can
verify that a given conflicting set of Ĝ ensures k + 1 edge
connectivity in polynomial time by successively removing
a VLink êi ∈ Ê and all the VLinks in χêi , and then
checking for VN connectivity. To show that the problem is
NP-complete, we reduce the NP-complete Minimum vertex
coloring problem [56]. to computing a minimal conflicting
set. Consider a graph H = (VH , EH) as an instance of the
Minimum vertex coloring problem. Also consider a bijection
ξ : Ê → VH that maps each VLink in Ê to a vertex
in VH . There is an edge (ξ(êi), ξ(êj)) ∈ EH between the
vertices ξ(êi) ∈ VH and ξ(êj) ∈ VH if and only if two
VLinks êi, êj ∈ Ê are conflicting with each other. We can
test if two VLinks are conflicting in polynomial time by
removing them and checking for k+1 edge connectivity in Ĝ.
Hence, the conflicting set of êi can be computed from H as
χêi = {êj|(ξ(êi), ξ(êj)) ∈ EH}, while the conflicting set of
Ĝ can be constructed as χĜ = {χêi |∀êi ∈ Ê}. If two VLinks
êi, êj ∈ Ê are not conflicting with each other, there is no edge
between ξ(êi) and ξ(êj). Hence, ξ(êi) and ξ(êj) can be given
the same color in H . Thus, finding a partition of Ê consisting
of non-conflicting VLinks is equivalent to finding vertices with
the same color in VH . Therefore, a minimal conflicting set of
Ĝ yields the minimum vertex coloring of H . Hence, Minimum
vertex coloring ≤P computing minimal conflicting set. �

Note that computing the optimal conflicting set of a VN is
harder than the NP-complete problem of computing a minimal
conflicting set, since the former takes SN and embedding
cost into account in addition to the number of disjointness
constraints. Hence, we propose a heuristic algorithm in § VI-
A.1 to compute a conflicting set that tries to minimize number
of disjointedness constraints as well as embedding cost. The
following Theorem, known as Menger’s Theorem [57], pro-
vide the basis for our algorithm to compute the conflicting set
of a VN Ĝ within a reasonable time.

Theorem 2 ( [57]): The size of the minimum edge-cut for
two distinct VNodes û, v̂ ∈ Ĝ is equal to the maximum number
of edge-disjoint paths between û and v̂ in Ĝ.

According to Theorem 2 any pair of VNodes û and v̂ in Ĝ
will remain connected in the presence of k SLink failures, if at
least one of the edge-disjoint paths P ûv̂

i ∈P ûv̂ remains intact.
This can be achieved by mapping any k+1 paths in P ûv̂ into
k+1 edge-disjoint paths in the SN. There are a combinatorial
number of ways of choosing these k + 1 edge-disjoint paths
between û and v̂. If P ûv̂

1 = P ûv̂
1 , P ûv̂

2 , ...., P ûv̂
k+1 is one

possible combination chosen to have edge-disjoint mapping,
two VLinks (x̂, ŷ)q ∈ P ûv̂

i and (ŵ, ẑ)r ∈ P ûv̂
j , such that

x �= w and y �= z, cannot share an SLink in their mappings.
Therefore, a VLink (x̂, ŷ)q ∈ P ûv̂

i is conflicting with all
other VLinks present in the paths in P ûv̂

1 \ P ûv̂
i , leading

to |χx̂ŷq| =
∑

P ûv̂
i ∈Pûv̂

1 ∧(x̂,ŷ)q �∈P ûv̂
i
|P ûv̂

i |. For example,
in Fig. 2, VNodes a and b will remain connected in presence of
two SLink failures if the VLinks on paths P ab

1 = (a, b), P ab
2 =

Fig. 2. The VN with only solid edges is the input VN, Ḡ. The VN with
both solid edges (Ē) and dashed edges (Ẽ) is the 2-protected VN, Ĝ. Any
subgraph of Ĝ having 3 edge connectivity is Ĝ2.

{(a, d), (d, c), (c, b)}, and P ab
3 = {(a, c), (c, e), (e, d), (d, b)}

are mapped to disjoint SN paths. Hence,
χab = P ab

2 ∪ P ab
3 .

We now discuss some heuristics to reduce the above com-
putation. First, we can ensure connectivity in Ĝ by ensuring
connectivity in a minimum spanning tree (MST) T̂ of Ĝ.
In this case, we need to compute k + 1 edge-disjoint paths
only for the |V̂ | − 1 VLinks in T̂ , as opposed to considering
all the VLinks in Ĝ. For instance, in Fig. 2, k + 1 edge-
disjoint path computations are required for the VLinks in
T̂ = {(a, b), (a, c), (c, d), (d, e), (e, f)} instead of all the
12 VLinks in Ĝ. Second, instead of arbitrarily selecting
k + 1 edge-disjoint paths from P ûv̂ , we can choose the
first k + 1 edge-disjoint shortest paths between û and v̂.
Thus, the size of the conflicting set of a VLink (û, v̂)q ∈ T̂
becomes |χûv̂q| =

∑i≤k+1
pûv̂

i ∈Pûv̂∧(û,v̂)q �∈pûv̂
i
|pûv̂

i |, where pûv̂
i

is the i-th edge-disjoint shortest path between two adjacent
VNodes û and v̂. This method yields smaller conflicting
sets than selecting arbitrary edge-disjoint paths. For instance,
the conflicting set of VLink (a, b) in Fig. 2 is χab = pab

2 ∪pab
3

where pab
2 = {(a, c), (c, b)}, and pab

3 = {(a, d), (d, b)}. The
following definitions, lemmas, and theorem formalize our
heuristics and prove that they result in better conflicting sets
than individual computation.

Definition 6 (Expansion Operator ): Given a k-protected
component Ĝk of a VN Ĝ and a VNode v̂, such that v̂ ∈ V̂ \V̂k

and ∃û ∈ V̂k, v̂ ∈ N (û), we define Ĝk  v̂ as an expansion
of Ĝk generated by adding v̂ and all the incident VLinks on
v̂ from any VNode in Ĝk . Mathematically, Ĝk  v̂ = (V̂k ∪
{v̂}, Êk ∪ {(û, v̂)q|û ∈ V̂k, û ∈ N (v̂)})

Definition 7 (EDSP PĜkv̂): We define EDSP as a set of
Edge-Disjoint Shortest Paths PĜkv̂ = {px̂v̂

i } between Ĝk and
a VNode v̂ ∈ V̂ \ V̂k, such that x̂ ∈ V̂k and all px̂v̂

i terminate
as the first VNode x̂ in V̂k is encountered, i.e., the only VNode
from V̂k that is on px̂v̂

i is x̂.
Observation 1: Using the expansion lemma, it can be

shown that Ĝk  v̂ is a k-protected component if and only
if there exists k + 1 edge-disjoint paths from Ĝk to v̂
in Ĝ.

Lemma 1: In an expansion Ĝk v̂, a VLink in (x̂, ŷ)q ∈ Êk

can not be present in one of the k + 1 EDSPs in PĜkv̂.
Proof: This proof is based on the observation that v̂

may not have shortest paths to some of the VNodes in Ĝk.
We consider an arbitrary VLink (x̂, ŷ)q ∈ Êk. There can be
three possibilities: i) there are two edge-disjoint paths from
x̂ and ŷ to v̂, P x̂v̂ ∈ PĜkv̂ and P ŷv̂ ∈ PĜkv̂ , respectively,
such that (x̂, ŷ)q �∈ P x̂v̂ ∧ (x̂, ŷ)q �∈ P ŷv̂ . To ensure edge
disjointness, (x̂, ŷ)q can only be added to any of P x̂v̂ or P ŷv̂.
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Adding (x̂, ŷ)q to one of P x̂v̂ or P ŷv̂ increases the length of
respective path. ii) There is only one path from x̂ (or ŷ) to
v̂, P x̂v̂ ∈ PĜkv̂ (or P ŷv̂ ∈ PĜkv̂), such that (x̂, ŷ)q �∈ P x̂v̂

(or (x̂, ŷ)q �∈ P ŷv̂) and there is no path from ŷ (or x̂) to
v̂ excluding (x̂, ŷ)q . Again, adding (x̂, ŷ)q to P x̂v̂ (or P ŷv̂)
does not contribute in finding a new edge-disjoint path and
only increases the length of the path P x̂v̂ (or P ŷv̂). iii)
There is no edge-disjoint path from x̂ or ŷ to v̂. In this
case, (x̂, ŷ)q can not be present in any of the k + 1 EDSPs
in PĜkv̂ . �

Lemma 2: In an expansion Ĝkv̂, the size of the conflicting
set of a VLink (û, v̂)q ∈ Ê \ Êk is given by |χûv̂q

� | =∑i≤k+1

pûv̂
i ∈PĜkv̂∧(û,v̂)q �∈pûv̂

i

|pûv̂
i |, where û ∈ V̂k and v̂ ∈ N (û).

Proof: For the embedding of Ĝk  v̂ on G to remain
connected in the presence of k SLink failures, we need to
satisfy two conditions: i) at least k + 1 edge-disjoint paths
from v̂ to Ĝk exist (i.e., |PĜkv̂| ≥ k + 1), and ii) all of
these paths are embedded on k + 1 edge-disjoint paths in G.
Therefore, a VLink (û, v̂)q ∈ pûv̂

i is conflicting with all the
VLinks present in the k +1 EDSPs in PĜkv̂ \ pûv̂

i . This leads
to |χûv̂q

� | =
∑i≤k+1

pûv̂
i ∈PĜkv̂∧(û,v̂)q �∈pûv̂

i

|pûv̂
i |. �

Theorem 3: For any VLink (û, v̂)q , the size of a conflicting
set χûv̂q

� obtained through the expansion of Ĝk  v̂ is less
than or equal to the size of any conflicting set χûv̂q

I of the same
VLink when computed independently, i.e., |χûv̂q

E | ≤ |χûv̂q
I |.

Proof: We consider two VNodes û ∈ V̂k and v̂ ∈
V̂ \ V̂k , such that v̂ ∈ N (û). When computed indepen-
dently, the size of the conflicting set of (û, v̂)q is |χûv̂q

I | =∑i≤k+1

pûv̂
i ∈Pûv̂∧(û,v̂)q �∈pûv̂

i
|pûv̂

i |. On other hand, when we con-

struct conflicting set through the expansion, Ĝk v̂, the size of
the conflicting set of the VLink (û, v̂)q ∈ Ê \ Êk is |χûv̂q

� | =∑i≤k+1

pûv̂
i ∈PĜkv̂∧(û,v̂)q �∈pûv̂

i

|pûv̂
i | (as proven in Lemma 2). In the

beginning, when Ĝk contains only one VNode, i.e., |V̂k| = 1,
it is obvious that |χûv̂q

I | = |χûv̂q
� |. For |V̂k| > 1, consider x̂ ∈

V̂k such that ∃pûv̂
i ∈P ûv̂ contains x̂ and px̂v̂

j ∈ PĜkv̂. Since
pûv̂

i contains x̂, according to the optimal substructure property
of the shortest path, we get pûv̂

i = pûx̂
i ||px̂v̂

j , assuming || is the
path concatenation operator. Thus, |px̂v̂

j | < |pûv̂
i | resulting into

|χûv̂q
� | < |χûv̂q

I |. If no such x̂ is found, we can assume x̂ = û

and in that case px̂v̂
j = pûv̂

i yielding |χûv̂q
� | = |χûv̂q

I |. Hence,
|χûv̂q

� | ≤ |χûv̂q
I |. �

As an example of Theorem 3, let us consider the VLink
(d, e) in Fig. 2 and the VN needs to survive single
SLink failure. If we compute independently, we get χde =
{(d, c), (c, e)}. When we compute through the expansion
Ĝ1  e where V̂1 = {a, b, c, d}, we get χde = {(c, e)}.

B. VLink Augmentation

As described in § III-C, we may need to augment a given
VN Ḡ with parallel VLinks to transform Ḡ to a k-protected
VN Ĝ. Since augmented parallel VLinks increase both the
number of disjointness constraints and embedding cost, it is
intuitive to minimize the number of parallel VLinks. Again,
we use Theorem 2 to find the pair of VNodes with less than
k + 1 edge connectivity and add parallel VLinks as needed.

Assume that for each pair of adjacent VNodes ū, v̄ ∈ V̄ , there
are at least m edge-disjoint paths in Ḡ. If m ≥ k + 1, Ḡ
is at least k + 1 edge-connected, hence no augmentation is
needed. If m < k + 1, we need to add k + 1 − m parallel
VLinks between ū and v̄. In general, max(0, k + 1 − m)
VLinks are needed for each pair of adjacent VNodes. For
instance, a VN should be 3-edge connected to survive 2 SLink
failures. Since there are 2 edge-disjoint paths between d and e
in Fig. 2, we add a parallel VLink. Similarly, we add 2 parallel
VLinks between e and f to make the VN 3-edge connected.
No augmentation is required for the rest of the adjacent pair of
VNodes. It can be easily shown that the number of VLinks to
be augmented remains the same during the expansion, Ĝk v̄.
In other words, if there are m̂ edge-disjoint paths from Ĝk to
v̄ in Ḡ, augmentation of max(0, k + 1− m̂) parallel VLinks
is needed to ensure the k+1 edge connectivity between û and
v̄, where û ∈ V̂k and v̄ ∈ N (û).

Theorem 4: Given a k-protected component Ĝk and two
arbitrary VNodes in Ḡ such that v̄1 /∈ V̂k and v̄2 /∈ V̂k;
Ĝk  v̄1  v̄2 and Ĝk  v̄2  v̄1 are the resulting k-protected
components obtained by incrementally applying expansion
operator  while considering v̄1 and v̄2 as the initial nodes,
respectively; A and B are the ordered set of parallel links
(ordered in the sequence they were added) augmented to Ḡ
in the process of obtaining Ĝk  v̄1  v̄2 and Ĝk  v̄2  v̄1,
respectively: |A| = |B|.

Proof: To prove the theorem, we assume without loss
of generality that an initial k-protected component Ĝk of Ḡ
consists of an arbitrarily selected VNode û ∈ V̄ with no
VLinks. Let’s consider two arbitrary VNodes v̄1 ∈ N (û) and
v̄2 ∈ N (û). The sets of edge-disjoint paths from û to v̄1

and v̄2 are P ûv̄1 and P ûv̄2 , respectively. However, a path
P ûv̄1 ∈ P ûv̄1 does not need to be edge-disjoint with a path
P ûv̄2 ∈ P ûv̄2 . Suppose, |P ûv̄1 | = m1 and |P ûv̄2 | = m2.
If either or both of m1 and m2 are greater than or equal to
k + 1 then the theorem is trivially proved. Hence we assume
that m1 < k + 1 and m2 < k + 1. We need to show
that the order of including v̄1 and v̄2 to Ĝk has no effect
on the total number of parallel VLinks needed to get either
Ĝk  v̄1  v̄2 or Ĝk  v̄2  v̄1.

If we expand to v̄1 first, k + 1 −m1 parallel VLinks will
be augmented between û and v̄1 to get Ĝk  v̄1. The parallel
VLinks between û and v̄1 only contribute in increasing the
connectivity between û and v̄1, and become part of Ĝk  v̄1.
Now, we consider v̄2. There can be two possibilities based on
whether v̄1 is on a path P ûv̄2 or not. If v̄1 is on a path P ûv̄2 ,
P ûv̄2 = {(ū, v̄1)}||P v̄1v̄2 . According to Lemma 1, VLinks
between û and v̄1 are in the k-protected component Ĝk  v̄1,
and cannot be present in any of the m2 edge-disjoint paths
from Ĝk  v̄1 to v̄2, thus the number of edge-disjoint paths
between v̄2 and Ĝk  v̄1 will remain the same as that of
between v̄2 and Ĝk. For the second possibility, when v̄1 is
not present on any P ûv̄2 ∈ P ûv̄2 , the paths in P ûv̄2 will
remain unaffected by expansion of Ĝk  v̄1. In both cases,
the number of edge-disjoint paths from Ĝk to v̄2 remains the
same. In other words, the number of parallel VLinks needed
to produce Ĝk v̄2 from Ĝk is the same as that for obtaining
Ĝk  v̄1  v̄2 from Ĝk  v̄1. The same can be shown if
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we consider v̄2 before v̄1. Therefore, the order of choosing
VNodes for inclusion into Ĝk does not have any impact on
the number of parallel VLinks to be augmented needed to get
either Ĝk  v̄1  v̄2 or Ĝk  v̄2  v̄1. �

C. Necessary Conditions for a Feasible VN Embedding

VN augmentation satisfies only one of the two necessary
conditions for CoViNE that is a VN must be k + 1 edge
connected. Recall from § I that the other necessary condition
for CoViNE is to have at least k+1 edge-disjoint paths between
every pair of VNodes after embedding the VN on the SN.
Indeed, an SN that is k + 1 edge-connected, i.e., each SNode
degree is at least k + 1, satisfies this necessary condition
to support the successful embedding of an augmented VN.
However, an SN without k + 1 edge-connectivity between all
SNode pairs can also support the successful embedding of an
augmented VN as long as there exists at least a node mapping
function f : V̄ → V for which each pair of SNodes f(ū) and
f(v̄), where ū, v̄ ∈ V̄ ∧ū �= v̄, have at least k+1 edge-disjoint
paths in the SN with sufficient bandwidth. In other words,
the SN G must have a non-empty sub-graph with at least |V̄ |
SNodes that contains at least one SNode from the location
constraint sets of each VNode ū ∈ V̄ and that sub-graph is
k + 1 edge-connected. A brute-force algorithm can enumerate
all such sub-graphs of G to compute the optimal solution
for CoViNE. However, as the number of sub-graphs grows
exponentially with the number of nodes in either VN or SN,
such brute-force approach cannot scale. In the following,
we briefly describe the factors that influence the steps that
should be taken to satisfy the aforementioned conditions,
which we also exploit to design a scalable heuristic.

Since parallel VLinks added to a VLink (û, v̂) as part of
the graph augmentation provide the required edge-connectivity
between the two VNodes û and v̂, VLink (û, v̂) and all the
parallel VLinks added to (û, v̂) must be embedded on mutually
edge-disjoint paths in the SN. In the worst case, a VLink (û, v̂)
can be augmented with k parallel VLinks requiring k+1 edge-
disjoint paths between the two SNodes where û and v̂ are
mapped. In addition, conflicting sets may enforce the SPaths
used for embedding the augmented VLinks to be disjoint with
the embedding of other VLinks of the same VN. Therefore,
some of the SPaths used for embedding augmented VLinks
can have a large number of SLinks to ensure disjointness
with other SPaths, thus resulting in a higher embedding
cost. Although the augmentation process described in § V-B
ensures that the number of augmented VLinks remains con-
stant irrespective of initial VNode choice and the subsequent
order, the decision of which VLinks to augment is still a
combinatorial optimization problem as discussed in § IV. This
decision of which VLink to augment can have an impact
on the subsequent VN embedding since one combination of
augmentation may lead to an infeasible embedding due to the
lack of sufficient edge-disjoint paths in the SN, while another
combination may result in a higher embedding cost due to
using longer edge-disjoint paths. To address these issues,
we develop a heuristic algorithm in § VI-A that takes both the
existence of sufficient number of edge-disjoint paths in the SN

and the number of SLinks present in those edge-disjoint paths
into account while expanding a k-protected component Ĝk.
The heuristic algorithm in § VI-A also computes conflicting
sets for each VLink by expanding a k-protected component
Ĝk as discussed in § V-A. These conflicting sets can then
be used by any embedding algorithm to ensure the existence
of k + 1 edge-disjoint paths between every pair of VNodes
in the VN embedding. We also present an ILP formulation
and a heuristic algorithm in § VI-B and § VI-C, respectively,
that leverage conflicting sets of VLinks to compute embedding
while satisfying the conditions discussed in this section.

VI. SEQUENTIAL SOLUTIONS TO COVINE

Due to the intractability of CoViNE-opt, in this section,
we present two sequential solutions to CoViNE. The first
solution consists of a heuristic algorithm (Alg. 1) and a
simplified formulation of CoViNE-opt, namely CoViNE-ILP.
In this solution, we delegate the task of transforming a VN Ḡ
to a k protected VN Ĝ and computing conflicting set χĜ of Ĝ
to Alg. 1 as described in § VI-A. The outputs (Ĝ and χĜ) of
Alg. 1 are then fed into CoViNE-ILP that embeds a VN on an
SN using a multi-commodity flow formulation as presented in
§ VI-B. However, CoViNE-ILP cannot scale to larger VNs and
SNs due to the limitations of LP solvers. Hence, we propose
a heuristic algorithm (Alg. 2) in § VI-C that takes Ĝ and χĜ

as inputs and embeds VNodes and disjointness constrained
VLinks of Ĝ in a coordinated manner. Combining Alg. 1 and
Alg. 2, we get our last solution, CoViNE-fast, that can solve
larger problem instances within a reasonable time.

A. Heuristic Algorithm for Conflicting Set and Augmentation

Alg. 1 starts with a seed k-protected component, Ĝk,
containing an arbitrary VNode ū ∈ V̄ with degree at least
k+1. Then the algorithm adds all of ū’s neighbors v̄ ∈ N (ū)
to V̂k in the increasing order of a score computed for each
VLink (ū, v̄). The score function assigns each VLink (ū, v̄) a
value proportional to an estimated cost of embedding (ū, v̄)
along with all its augmented VLinks (if necessary) on the
SN. Since ū already belongs to a k-protected component Ĝk,
the number of additional VLinks that need to be augmented
for a VLink (ū, v̄) s.t., v̄ ∈ N (ū), depends on the degree
of v̄ denoted by degree(v̄). In the worst case, the VLink
(ū, v̄) needs to be augmnted with max((k+1−degree(v̄)), 0)
parallel VLinks as degree(v̄) imposes an upper bound on the
number of EDSPs between ū and v̄. When degree(v̄) ≥ k+1,
no augmentation is needed for the VLink (ū, v̄) and the score
function assigns a large value for the estimated embedding
cost of (ū, v̄) to make it appear at the end of the sorted order
(Line 10). Otherwise, when degree(v̄) < k + 1, the VLink
(ū, v̄) and all the k + 1 − degree(v̄) parallel VLinks need
to be embedded on mutually disjoint SPaths following the
discussion in § V-C. Therefore, Alg. 1 computes the esti-
mated embedding cost for (ū, v̄) by multiplying the band-
width demand būv̄ with the number of SLinks present in the
k + 2 − degree(v̄) EDSPs in the SN that yields the lowest
cost embedding for (ū, v̄) and its up to k + 1 − degree(v̄)
augmented VLinks (Line 18).
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Algorithm 1 Compute Conflicting Sets and Augmentation

1: function CONFLICTINGSETSAUGMENTATION(Ḡ, k)
2: ∀(ū, v̄) ∈ Ē: χūv̄ ← φ, aūv̄

0 ← 1, Q← φ
3: // v̄ is an arbitrary VNode with degree≥ k + 1
4: ∃v̄ ∈ V̄ : Ĝk ← ({v̄}, φ)
5: ENQUEUE(Q, v̄)
6: while Q is not empty do
7: ū← DEQUEUE(Q)
8: Σ← {(ū, v̄)|v̄ ∈ N (ū) ∧ v̄ �∈ V̂k}
9: for all (ū, v̄) ∈ Σ do

10: if degree(v̄) ≥ k + 1 then score(ū, v̄)←∞
11: else
12: for all (l, m) ∈ L(û)× L(v̂) ∧ l �= m do
13: P lm ← EDSP(G, l, m, k + 2− degree(v̄))
14: if |P lm| < k + 2− degree(v̄) then
15: rank(l, m)←∞
16: else
17: rank(l, m)←∑

p∈Plm |p|
18: score(ū, v̄)← min

(l,m)∈L(û)×L(v̂)
rank(l, m)būv̄

19: Ē ← Sort Σ in increasing order of score(ū, v̄)
20: for all (ū, v̄) ∈ Ē do
21: PĜkv̄ ← EDSP(Ḡ, Ĝk, ū, v̄, k + 1)
22: for i = 1→ (k + 1− |PĜkv̄|) do
23: Ê ← Ē ∪ (ū, v̄)i, aūv̄

k ← 1
24: PĜkv̄ ← PĜkv̄ ∪ (ū, v̄)i

25: for all pĜkv̄
i ∈ PĜkv̄ do

26: for all (x̄, ȳ)q ∈ pĜkv̄
i do

27: for all pĜkv̄
j ∈ PĜkv̄|j �= i do

28: χx̄ȳq ← χx̄ȳ ∪ {∀(s̄, t̄)r ∈ pĜkv̄
j }

29: Ĝk ← Ĝk  v̄, ENQUEUE(Q, v̄)
30: return χḠ

To estimate the lowest embedding cost for (ū, v̄) and its
up to k + 1 − degree(v̄) augmented parallel VLinks, Alg. 1
computes the sets of k + 2 − degree(v̄) EDSPs in the SN
using EDSP procedure for each possible pair of SNodes where
VNodes ū and v̄ can be mapped. For a pair of such SNodes
l and m, EDSP iteratively applies Dijkstra’s shortest path
algorithm [58] to compute a set of k + 2− degree(v̄) EDSPs
as P lm (Line 13). After computing each EDSP, all the SLinks
present in the EDSP are removed from G in order to ensure
the edge-disjointness of the subsequent paths. Alg. 1 then uses
the set of k + 2 − degree(v̄) EDSPs with the least number
of SLinks over all pairs of (l, m) ∈ L(û) × L(v̂) ∧ l �= m to
compute the estimated embedding cost of (ū, v̄). Such sorted
order of VLinks ensures that parallel VLinks are augmented to
VLinks of an MST T̂ of Ĝk to ensure necessary connectivity
with the lowest estimated cost whenever possible. Such SN
awareness also rules out the possibility of augmenting a VLink
(ū, v̄) with k + 1− degree(v̄) parallel VLinks if none of the
SNode pairs (l, m) ∈ L(û) × L(v̂) ∧ l �= m has at least
k + 2 − degree(v̄) EDSPs (Line 15). The final node and
link embedding are computed by Alg. 2 that neither uses

the estimated embedding cost nor the mappings computed
by Alg. 1.

The above process is repeated until all the VNodes of Ḡ
are added to Ĝk . For each v̄, Alg. 1 computes k + 1 EDSPs
in the VN, PĜkv̄ between Ĝk and v̄ using EDSP procedure
(Line 21). EDSP initially selects the VLink, (ū, v̄) as the first
shortest path pĜkv̄

1 to PĜkv̄. It then invokes Dijkstra’s shortest

path algorithm [58] k times to compute pĜkv̄
i , the i-th EDSP

between Ĝk and v̄. After computing each pĜkv̄
i , all VLinks

present in pĜkv̄
i are removed from Ḡ in order to ensure the

edge-disjointness of the later paths. Dijkstra’s shortest path
algorithm is modified to use the bandwidth demand of a VLink
as the VLink weight while computing EDSPs. Alg. 1 then
proceeds to check if any augmentation is required between
Ĝk and v̄. To do so, it counts the number of EDSPs, |PĜkv̄|,
computed in line 21. If the number of EDSPs is less than k+1,
line 23 of Alg. 1 adds k+1−|PĜkv̄| parallel VLinks between ū
and v̄. The i-th parallel VLink, denoted by (ū, v̄)i, constitutes
the (|PĜkv̄|+ i)-th EDSP between Ĝk and v̄. Finally, Alg. 1
updates the conflicting sets of the corresponding VLinks as
described in Lemma 2 (Line 28).

1) Discussion: When augmentation is needed, Alg. 1
invokes EDSP procedure O(|V̄ ||N (ū)||L(ū)|2) times. EDSP
invokes Dijkstra’s shortest path algorithm on SN G k + 1
times in the worst case. The time complexity of Dijkstra’s
shortest path algorithm on SN G based on a min-priority
queue is O(|E| + |V | log |V |). Therefore, calls to EDSP
requires running time of O((k + 1)|V̄ ||N (ū)||L(ū)|2(|E| +
|V | log |V |)). When augmentation is not required, the time
complexity of Alg. 1 is dominated by the EDSP procedure
that is invoked O(|V̄ ||N (ū)|) times. EDSP invokes Dijkstra’s
shortest path algorithm on VN Ḡ k + 1 times yielding
O((k + 1)(|Ē| + |V̄ | log |V̄ |)) running time. In this case,
the running time of Alg. 1 becomes O((k+1)|V̄ ||N (ū)|(|Ē|+
|V̄ | log |V̄ |)).

An alternate way for implementing EDSP is to use a
maximum flow algorithm [59]. However, the iterative shortest
path based method and the maximum flow algorithm have
similar running time and solution quality [59]. The only
scenario where maximum flow algorithms are known to be
more effective is when the graph has a trap topology [59].
Dunn et al., have shown that the formation of trap topologies
require many conditions to be met simultaneously, hence, they
are very rare in production networks [59]. Therefore, taking
any special measures for such topology seems unnecessary.
Consequently, we made an arbitrary choice and resorted to
using the iterative application of Dijkstra’s shortest path algo-
rithm for implementing EDSP.

B. CoViNE-ILP: ILP formulation for CoViNE Embedding

CoViNE-ILP, takes a k-protected VN Ĝ and its conflicting
set χĜ as inputs. It embeds Ĝ on an SN G while ensuring
the disjointness constraints imposed by χĜ and minimizing
cost according to (17). CoViNE-ILP is similar to CoViNE-opt,
excluding the variables and constraints related to the augmen-
tation and disjointness requirement computation. CoViNE-ILP
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does not use the augmentation variable (i.e., aūv̄
k ) and con-

straint (2) of CoViNE-opt since augmentation is performed by
Alg. 1. Therefore, CoViNE-ILP replaces (4) by the following:

∀(ū, v̄) ∈ Ē, ∀k ∈ K, ∀u ∈ V :∑
∀v∈N (u)

(xūv̄k
uv − xūv̄k

vu ) = yūu − yv̄u (18)

Furthermore, CoViNE-ILP uses the disjointness constraints
imposed by pre-computed χĜ. Hence, it eliminates disjoint
group assignment variable dūv̄k

C̄i
and replaces disjointness

constraints (12) and (13) from CoViNE-opt with the following:

∀(u, v) ∈ E, ∀(ū, v̄) ∈ Ē, ∀k ∈ K, ∀(ā, b̄)q ∈ χūv̄k :

xūv̄k
uv + xūv̄k

vu + xāb̄q
uv + xāb̄q

vu ≤ 1 (19)

(19) ensures that VLink embedding of (û, v̂)k ∈ Ê will
never share an SLink with the embeddings of the conflict-
ing VLinks present in χûv̂k, thus satisfying the disjointness
relation among them. If the SN does not have sufficient
number of EDSPs to satisfy the disjointness constraint (19),
CoViNE-ILP becomes infeasible rendering no solution for the
embedding. The total number of binary variables for xūv̄k

uv is
|Ē|×k×|E| and total number of constraints generated by (19)
is k × |E| × |Ē|2. Therefore, unlike CoViNE-opt, which has
an exponential number of variables and constraints, CoViNE-
ILP has a polynomial number of variables and constraints.
Note that even with the polynomial number of variables and
constraints CoViNE-ILP is intractable as the worst case time
complexity is O((k × |E| × |Ē|2)× 2(|Ē|×k×|E|)).

C. Heuristic Algorithm for CoViNE Embedding

Alg. 2 computes two functions, nmap and emap, which
represent the VNode and VLink mapping of Ĝ on G, respec-
tively. Since there is no cost associated with VNode mapping,
a VLink mapping that minimizes total cost determines the
VNode mapping. As discussed in § V-A, disjointness con-
straints imposed by conflicting sets may lead to infeasible
solutions. Hence, Alg. 2 prioritizes finding a feasible mapping
than minimizing the embedding cost. Following this intuition,
Alg. 2 first sorts the VNodes û ∈ V̂ in decreasing order of the
sum of conflicting set sizes of incident VLinks. This sorted list
of VNodes is represented by V̂ . Since a VNode with VLinks
having larger conflicting sets becomes too constrained to be
mapped to a suitable SNode, Alg. 2 tries to map VNodes in
the order of V̂ . However, Alg. 2 maps a VNode from V̂ to the
candidate SNode that satisfies the disjointness constraints and
minimizes the embedding cost.

For each VNode û ∈ V̂ , Alg. 2 searches for an unallocated
SNode in û’s location constraint set, L(û), which yields a
feasible mapping with the minimum cost. To embed û, Alg. 2
loops through each candidate SNode l ∈ L(û) (Line 5− 13),
to first temporarily map û to l (Line 6). Then the algorithm
computes temporary mappings for all the VLinks incident
to û. The VL-MAP (Alg. 3) procedure is invoked to find
the mapping for each such VLink (Line 9). VLinks incident
to û are picked in decreasing order of their conflicting set
sizes to maximize the chances of finding a feasible solution.
Alg. 2 finally embeds û to the candidate l that leads to a

Algorithm 2 Compute VN Embedding

1: function VN-EMBEDDING(G, Ĝ, χĜ)
2: V̂ ← Sort û ∈ V̂ in decreasing order of∑

∀v̂∈N (û)

∑
∀k∈K

|χûv̂k|

3: for all û ∈ V̂ do
4: Candidate← φ
5: for all l ∈ L(û) do
6: nmap(û)← l
7: E ← Sort (û, v̂)q ∈ Ê in dec. order of |χûv̂q|
8: for all (û, v̂)q ∈ E| emap(û, v̂)q = φ do
9: P [(û, v̂)q]← VL-MAP(G, Ĝ, χĜ, (û, v̂)q)

10: if
∑

∀(û,v̂)q∈E
cost(P [(û, v̂)q]) is minimum then

11: M ← P , Candidate← l

12: nmap(û)← φ
13: ∀(û, v̂)q ∈ E : emap(û, v̂)q ← φ

14: if Candidate �= φ then
15: Add mapping û→ Candidate to nmap
16: ∀(û, v̂)q ∈ E|nmap(û) �= φ ∧ nmap(v̂) �= φ:
17: Add (û, v̂)q →M [(û, v̂)q] to emap
18: else return No Solution Found
19: return {nmap, emap}

Algorithm 3 Compute VLink Mapping

1: function VL-MAP(G, Ĝ, χĜ, (û, v̂)q)
2: pûv̂ ← φ
3: for all (ŝ, t̂)r ∈ χûv̂q : do
4: E ← E − {(a, b) ∈ E|(ŝ, t̂)r is mapped to (a, b)}
5: if nmap(û) �= φ ∧ nmap(v̂) �= φ then
6: Qnmap(û)nmap(v̂)←MP(G, nmap(û), nmap(v̂), bûv̂)
7: else if nmap(û) = φ ∧ nmap(v̂) �= φ then
8: Qnmap(û)nmap(v̂)← min

∀l∈L(û)
{MP(G, l, nmap(v̂), bûv̂)}

9: else if nmap(û) �= φ ∧ nmap(v̂) = φ then
10: Qnmap(û)nmap(v̂)← min

∀l∈L(v̂)
{MP(G, nmap(û), l, bûv̂)}

11: if Qnmap(û)nmap(v̂) �= φ then
12: Add (û, v̂)q → Qnmap(û)nmap(v̂) to emap

13: return Qnmap(û)nmap(v̂)

feasible mapping for all the VLinks incident to û and yields
the minimum embedding cost (Line 15). The algorithm fails,
if no such feasible l is found. Once a VNode û has been
finally mapped, Alg. 2 creates the final mapping for only those
VLinks incident to û whose both endpoints are already finally
mapped (Line 17). If we map a VLink with one unmapped
endpoint (e.g., , v̂), we have to map v̂ based on this local
information. This would reduce the degrees of freedom for v̂
when other VLinks incident to v̂ would have been mapped,
and may lead to infeasible solution. Mappings of such VLinks
incident to û are finalized when their unmapped endpoints are
finally mapped.

We now describe the VL-MAP (Alg. 3) procedure for finding
the mapping of a VLink, (û, v̂)q . First we remove all the
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SLinks used by the mappings of all the VLinks in χûv̂q to
satisfy the disjointness constraints (Line 4). Then, we compute
mapping for (û, v̂)q by considering the following two cases:
(i) both endpoints of (û, v̂)q have already been mapped to
some SNodes. In this case, we find a minimum cost path
between nmap(û) and nmap(v̂) with capacity at least bûv̂ in
G (Line 6); (ii) only û (or v̂) is mapped and the other endpoint
v̂ (or û) has not been mapped. In this case, we compute
the minimum cost path between nmap(û) (or nmap(v̂))
and all possible locations for the unmapped VNode v̂ (or
û), l ∈ L(v̂) (or L(û)) with at least bûv̂ capacity (Line 8
(or Line 10)). The VLink (û, v̂)q is temporarily mapped
to the computed path and the mapping is added to emap
(Line 12). We modified Dijkstra’s shortest path algorithm [58]
to consider SLink capacities, while computing the minimum-
cost path (MP procedure call in Alg. 3). The cost of each SLink
(u, v) ∈ E is set to Cuv × bûv̂ , where bûv̂ is the bandwidth
requirement of the VLink to be embedded.

1) Discussion: The most computationally expensive step of
Alg. 2 is the VL-MAP procedure, which invokes Dijkstra’s
shortest path algorithm requiring O(|E| + |V | log |V |) time.
Since VL-MAP is invoked O(|V̂ ||L(û)||N (û)|) times, the run-
ning time of Alg. 2 is O(|V̂ ||L(û)||N (û)|(|E|+ |V | log |V |)).
Unlike most of the approaches in the literature that perform
VNode and VLink mapping sequentially [60], Alg. 2 addresses
VNode mapping and disjointness constrained VLink mapping
simultaneously. However, Alg. 2 maps VNodes of a VN
(or, the VLinks incident to a VNode) one-by-one, starting
from the most constrained VNode (or, VLink) to the least
constrained one. Although these orders increase the chances
of finding a feasible solution, they may lead to sub-optimal
solutions. Meta-heuristic approaches can achieve better orders
by exploring larger solution space at the cost of increased
execution time [61].

VII. EVALUATION

We evaluate our proposed solutions for CoViNE through
extensive simulations. We briefly discuss the compared
approaches in § VII-A, simulation setup in § VII-C followed
by the performance metrics in § VII-B. Finally, we describe
our evaluation results in § VII-D focusing on optimality,
scalability, embedding performance, and failure restoration.

A. Compared Approaches

We compare the performance of our sub-optimal solu-
tions (CoViNE-ILP and CoViNE-fast) to the optimal solution,
CoViNE-opt under single (k = 1) and double (k = 2) SLink
failure scenarios. We have restricted our failure scenarios to
double link failures, since the possibility of more than two
simultaneous failures is extremely low in practice [7], [24].
To measure how much extra resources are needed to guarantee
connectivity under different failure scenarios, we compare our
approaches with an optimal VNE algorithm [4] that does not
ensure any connectivity during substrate failure (k = 0).
Table II summarizes these approaches by listing the failure
scenarios and names of the ILP and algorithm they use along
with their worst case time complexities.

B. Performance Metrics

1) Embedding Cost: The cost of provisioning bandwidth for
the VLinks in a VN, computed using (17).

2) Execution Time: The time required for an algorithm to
find the solution for CoViNE.

3) Restored Bandwidth: The percentage of VLinks’ band-
width that is restored after these VLinks have been affected
by one or more SLink failure(s).

C. Simulation Setup

We implement the ILP formulations of CoViNE-opt and
CoViNE-ILP using IBM ILOG CPLEX C++ library and
Alg. 1 and Alg. 2 using C++. The evaluation was performed
on a machine with 8×10-core hyper-threaded Intel Xeon
E7-8870 2.40GHz CPU and 2TB RAM. To demonstrate the
scalability of our solutions, we consider both small and large
network topologies summarized in Table III. For small and
large cases, we vary both the size and LNR of SNs and
VNs to assess the robustness of our solutions. Note that the
problem instances have been selected by studying ISP network
measurement research literature [62]–[64] and consulting with
our industry partners. For each problem instance in Table III,
with a given SN size and VN size, we generate 3 VNs for
each generated SN, and execute the compared approaches
in Table II to embed each VN on the SN independently. For
a particular VN and SN, the source and destination of an
SLink or a VLink and the location constraints of VNodes
are chosen randomly, and VLink demands are set to 10%
of the SLink bandwidths. For each VN, we measure the
performance metrics and plot the metrics’ average value with
errorbar showing the maximum and the minimum values.
To analyze the impact of using different algorithms for solving
VN embedding (Fig. 4), we use star, ring, and randomly
connected VN topologies on anonymous inter-continental net-
work topologies with varying Link-to-Node Ratios (LNRs).
However, due to huge cost of deploying inter-continental links,
these SNs do not have enough LNRs to guarantee neces-
sary edge-connectivity against double link failures. Therefore,
we do not evaluate double link failure scenarios for this
analysis. In addition, we demonstrate how our approaches can
survive affected VLinks’ bandwidth in the presence of single
and double SLink failures (Fig. 6).

D. Results

1) Small Scale Scenarios:
a) Optimality analysis: 3(a)–3(d) compares embedding

cost for guaranteeing connectivity against different failure
scenarios (k = 0, 1, and 2) by varying SN and VN sizes,
while Fig. 3(e)–3(h) presents embedding cost by varying SN
and VN LNRs. Fig. 3(a) and Fig. 3(b) show that cost increases
for all the compared approaches with the increase in SN size.
This is due to the fact that location constraints of the VNodes
of a VN are placed far apart from one another in a larger SN,
thus involving more SLinks in the substrate paths for mapping
VLinks of the VN and consuming more substrate resources
along those SLinks. An opposite trend is observed when SN
LNR is increased in Fig. 3(e) and Fig. 3(f). Incrementing SN
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TABLE II

COMPARED APPROACHES

Fig. 3. Embedding Cost (varying both topology size and LNR) and execution time analysis for small scale topologies.

density increases substrate path diversity with higher number
of shorter and disjoint paths that result in lower embedding
costs. In constrast, increasing VN size or VN LNR escalates
embedding cost in general as seen in Fig. 3(c), Fig. 3(d), and
Fig. 3(g) except for double link failure scenario in Fig. 3(h).
This stems from the fact that a larger or denser VN has a
higher number of VLinks to be embedded that increase sub-
strate resource consumption. In contrast, sparse VNs require

higher number of VLinks to be augmented (see Fig. 6(d)) to
guarantee connectivity against double link failures that results
in higher cost for embedding the augmented VLinks at lower
VN LNRs.

Among the approaches that guarantee connectivity for single
failure scenario (i.e., k = 1) as shown in Fig. 3(a) and
Fig. 3(c), S-CoViNE-opt generates the lowest cost of embed-
ding. Such behavior is expected since S-CoViNE-opt jointly
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TABLE III

SUMMARY OF SIMULATION PARAMETERS

optimizes all the subproblems of CoViNE yielding the optimal
cost, whereas S-CoViNE-ILP and S-CoViNE-fast address them
sequentially. However, as can be seen in Fig. 3(c), S-CoViNE-
opt does not scale beyond a VN of size 8 due to its dependency
on the exponential number of edge-cuts in the VN. S-CoViNE-
ILP eliminates this dependency by leveraging conflicting set
of a VN and adopting a heuristic algorithm for performing
augmentation and computing disjointness requirement. Despite
using a heuristic for solving part of CoViNE, the embedding
costs of S-CoViNE-ILP remain very close (within ∼ 3% on
average) to those of S-CoViNE-opt. In contrast, S-CoViNE-
fast employs heuristic algorithms for all the sub-problems
of CoViNE and incurs ∼ 18% and ∼ 16% additional cost
compared to S-CoViNE-opt and S-CoViNE-ILP, respectively.
Slightly higher optimality gaps are observed among the solu-
tions for double failure scenarios (i.e., k = 2) in Fig. 3(b)
and Fig. 3(d) compared to single failure cases. In particular,
the optimality gap between D-CoViNE-ILP and D-CoViNE-opt
is ∼ 4%, whereas the same between D-CoViNE-fast and D-
CoViNE-ILP is ∼ 19%. The increased optimality gaps among
the solutions for k = 2 is due to having more augmentation
and disjointness constraints than the single failure solutions.

b) Embedding cost for different failure scenarios: A
comparison of costs between single and double failure scenar-
ios of any solution (e.g., S-CoViNE-opt and D-CoViNE-opt)
in Fig. 3(a)–3(d) reveals that ensuring connectivity against a
higher degree of failure (k = 2) incurs a higher embedding
cost. The reasons are twofold. First, D-CoViNE-opt, as well
as D-CoViNE-ILP and D-CoViNE-fast, require more parallel
VLinks to be added than their single failure counterparts to
ensure the necessary edge-connectivity in the VN, consuming
additional substrate resources for embedding the augmented
VLinks. Second, solutions for double SLink failures require
more disjointness constraints to be satisfied to preserve neces-
sary edge-connectivity in the embedding of the VN, resulting
in longer substrate paths for VLink mapping. Following these
arguments, ViNE-ILP (with k = 0) produces the lowest cost of
embedding, since it neither augments any VLink nor imposes
any disjointness constraint. Empirically, D-CoViNE-opt
incurs ∼24% and ∼66% more cost than S-CoViNE-opt and
ViNE-ILP, respectively.

Fig. 4. Performance analysis of Alg. 2.

c) Scalability analysis: Fig. 3(i)–3(l) reports execution
times in logarithmic scale for guaranteeing connectivity
against different failure scenarios by varying the SN and
VN sizes. These figures show that the execution times of all
the approaches, relying on ILP formulation for part of the
problem, increase exponentially with increasing problem size.
In contrast, execution times of the heuristic (i.e., S-CoViNE-
fast and D-CoViNE-fast) remain well within a second for
similar problem instances. Furthermore, S-CoViNE-opt and D-
CoViNE-opt are the slowest among the approaches for single
and double failure scenarios, respectively, due to the intricacy
of CoViNE-opt as discussed in § IV-D. In addition, D-CoViNE-
opt is an order of magnitude slower than S-CoViNE-opt due
to having more disjointness constraints and variables than S-
CoViNE-opt. Finally, Fig. 3(k) and Fig. 3(l) reveal that VN size
has a more profound impact on the scalability of the ILP based
approaches than what SN size has. For instance, with our
current hardware, CoViNE-opt and CoViNE-ILP hit a ceiling
in terms of VN size of 8 and 22 nodes, respectively, on a
100 node SN.

d) Optimality analysis of Alg. 2: We now analyze how
much extra resources are allocated by S-CoViNE-fast com-
pared to S-CoViNE-ILP for different VN topologies. This extra
resource usage is measured as the ratio of their embedding
costs since both S-CoViNE-fast and S-CoViNE-ILP use the
same Alg. 1 for augmentation and conflicting set computation.
Therefore, the cost ratio indicates the perfomance comparison
between ILP formulation for VN embedding and Alg. 2.
Fig. 4(a) presents the Cumulative Distribution Function (CDF)
of cost ratio for different types of VNs. This plot shows that
95% VNs with star and random topologies are embedded by
S-CoViNE-fast with at most 20% extra resources compared to
S-CoViNE-ILP. For ring topologies, costs of 91% of the VNs
incurred by S-CoViNE-fast remain within 35% of those of
S-CoViNE-ILP. Ring topologies are different from star and
random topologies as all the VLinks in the ring need to
be embedded on mutually disjoint substrate paths to ensure
connectivity against failures. Such stringent disjointness con-
straints affect the sequential VLink mapping of Alg. 2 in
S-CoViNE-fast, resulting in the highest cost ratio for ring
topologies. However, the higher costs of S-CoViNE-fast, com-
pared to S-CoViNE-ILP, are compensated by their higher
scalability and much faster execution time as discussed earlier.
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Fig. 5. Embedding cost and execution time analysis for large scale topologies.

Fig. 4(a) exhibits higher cost ratios between S-CoViNE-fast
and S-CoViNE-ILP than those observed in Fig. 3(a). This is
due to using real SN topologies that are sparser than synthetic
SNs used in Fig. 3(a). To analyze this further, Fig. 4(b) shows
how the density of the underlying SN impacts the performance
of S-CoViNE-fast. As we observe in Fig. 4(b), the costs of
S-CoViNE-fast and S-CoViNE-ILP for ring and random VNs
differ by a larger margin in a ring-like SN (i.e., LNR=1.2).
In this extreme case, the penalty for missing an optimal
solution by S-CoViNE-fast is substantial as the disjoint path
becomes much longer than the shorter one due to lack of SN
path diversity, resulting in a higher cost ratio. However, cost
ratios between S-CoViNE-fast and S-CoViNE-ILP decrease
initially with the increase in SN LNR (Fig. 4(b)), and do not
change significantly for SNs with LNR≥1.6. An increase in
SN LNR increases SN path diversity. S-CoViNE-fast exploits
this path diversity to find a shorter path for embedding a
VLink, resulting in lower cost ratios. For star VNs, disjointness
requirement is much less than denser VNs, yielding close to
unit cost ratios in all cases.

2) Large Scale Scenarios:

a) Embedding cost: Fig. 5(a) shows embedding costs of
S-CoViNE-fast and D-CoViNE-fast with varying VN sizes on
500 and 1000 node SNs. As expected, cost increases with the
increase in both VN size and SN size. Fig. 5(b) and Fig. 5(c)
show embedding cost by varying VN and SN LNRs, respec-
tively. In these scenarios, embedding cost is mostly influenced
by disjointness constraint and parallel VLink augmentation.
For D-CoViNE-fast, augmentation cost dominates for VNs
with LNR ≤ 2.1 (see Fig. 6(d)). In addition, the number of
augmented VLinks decreases with the increase in VN LNR,
hence the initial decrease in embedding cost. However for VNs
with LNR > 2.1, cost for ensuring disjointness constraint
dominates, which justifies the later increase in Fig. 5(b)
for D-CoViNE-fast. On the other hand, for S-CoViNE-fast,

disjointness constraint dominates and embedding cost
increases as higher number of VLinks are embedded on the
same SN for VNs with larger LNR. For the same reason
discussed for small cases, higher path diversity accounts for
the decrease in cost with an increase in SN LNR in Fig. 5(c).

b) Scalability analysis: Confirming to the running time
analysis in § VI-A and § VI-C, the execution times for S-
CoViNE-fast and D-CoViNE-fast increase with the increase
in VN and SN sizes (Fig. 5(d)), VN LNR (Fig. 5(e)), and
SN LNR (Fig. 5(f)). In addition, the execution times for S-
CoViNE-fast and D-CoViNE-fast are comparable with each
other in the large scale scenarios.

E. Failure Restoration

To demonstrate the failure restoration capability of CoViNE,
we steer three classes of traffic in a VN, labeled as Pr-1
(highest priority), Pr-2, and Pr-3 (lowest priority) demanding
20%, 30%, and 50% of each VLink’s bandwidth, respectively.
A controller handles failures by rerouting traffic in the affected
VLinks along alternate shortest paths in the embedding of
the VN. Bandwidth sharing along these paths follows fair shar-
ing policy between traffic from the same class and weighted
fair sharing across different traffic classes.

Fig. 6(a) and Fig. 6(b) show the restored bandwidth of
CoViNE-fast and ViNE-ILP in the presence of single and dou-
ble SLink failures, respectively. On the other hand, Fig. 6(c)
and Fig. 6(d) present the overhead for ensuring connectivity in
terms of embedding cost and number of augmented VLinks,
respectively. As envisioned at the beginning of this paper,
CoViNE-fast successfully restores almost the full bandwidth
for the highest priority traffic in the presence of both sin-
gle and double SLink failures as shown in Fig. 6(a) and
Fig. 6(b), respectively. However, the successful restoration of
the highest priority traffic achieved by CoViNE-fast comes
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Fig. 6. Restored bandwidth and overhead analysis.

at the expense of penalizing the traffic from lower prior-
ity classes. The overall decrease in restored bandwidth for
CoViNE-fast with increasing VN LNR is counter-intuitive.
This can be explained by observing the overhead shown
in Fig. 6(d). As VN LNR increases in Fig. 6(d), the num-
ber of augmented VLinks and the amount of spare band-
width decrease, thus offering less bandwidth to restore the
same or possibly higher amount of bandwidth lost due to
failures. Allocating spare bandwidth in the VLinks of a
denser VN could help restore more bandwidth upon failure.
However, spare bandwidth allocation with guaranteed connec-
tivity is a separate problem that is out of the scope of this
paper.

Fig. 6(a) and Fig. 6(b) also demonstrate that restored
bandwidths of a specific traffic class achieved by ViNE-ILP
are always lower than those achieved by both S-CoViNE-
fast and D-CoViNE-fast. This is expected since ViNE-ILP
does not take any measure to guarantee connectivity in the
VN embedding against SLink failures. In addition, restored
bandwidth of ViNE-ILP with the increase in VN LNR follows
an opposite (increasing) trend compared to CoViNE-fast. The
reasons are twofold. First, a higher LNR induces a higher path
diversity in a VN that reduces the chances of VN partitioning
in the presence of SLink failures. Second, a denser VN has
more options for rerouting traffic in the affected VLinks along
alternate paths. Despite the increasing trend, restored band-
widths of ViNE-ILP do not exceed those of CoViNE-fast even
in higher LNR VNs, thanks to the disjointeness constraints of
CoViNE-fast. Furthermore, restored bandwidths of ViNE-ILP
are very poor in sparse VNs leaving the VNs vulnerable to fail-
ures, whereas CoViNE-fast offers much better restorability in
such VNs.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have studied the Connectivty-aware
Virtual Network Embedding (CoViNE) problem that ensures
VN connectivity in the presence of multiple substrate link
failures. We have presented an ILP formulation, CoViNE-opt,
that jointly solves three sub-problems of CoViNE, namely,
VN augmentation, computation of disjointness constraints, and
VN embedding. To address the intractability of CoViNE-opt,
we have separated VN augmentation and disjointness con-
straint computation from embedding and addressed them
sequentially. We have introduced the concept of conflicting set

of a VN to efficiently compute disjointness constraints without
relying on the exponential number of edge-cuts in a VN as
required by CoViNE-opt. Given the NP-complete nature of
each of the sub-problems and their inter-dependency, we have
presented a heuristic algorithm that solves both VN augmen-
tation and conflicting set computation simultaneously. The
conflicting set as well as the augmented VN, both produced
by the heuristic algorithm, are then used to impose polynomial
number of disjointness constraints to the sub-problem of
VN embedding. Based on how we address the constrained
VN embedding sub-problem, we have provided two more
solutions to CoViNE, namely CoViNE-ILP and CoViNE-fast.
CoViNE-ILP extends a Multi-commodity Unsplittable Flow
based ILP formulation to address the constrained VN embed-
ding, while CoViNE-fast uses a heuristic algorithm to do
the same. In contrast to the state-of-the-art, our solutions
are generalized to handle multiple substrate link failures for
arbitrary topologies.

We have evaluated our solutions using a variety of network
topologies under different failure scenarios. Evaluation results
reveal that although CoViNE-opt can be used to benchmark
the solutions to CoViNE, it cannot be used to solve practical
problems due to its severely low scalability. Our evaluation
results demonstrate that CoViNE-ILP very closely approxi-
mates CoViNE-opt, and can be used as a baseline to compare
heuristic algorithms. In contrast, CoViNE-fast scales to large
topologies at the cost of provisioning about 16% additional
resources compared to CoViNE-ILP, while executing several
orders of magnitude faster for the same problem instances.
Evaluation results also show that CoViNE for single and
double link failure scenarios require on average ∼ 24% and
∼ 66% extra resources than a VN embedding strategy that
does not guarantee any connectivity. We have also demon-
strated that VN connectivity can be leveraged to restore
higher priority traffic in the presence of multiple substrate link
failures.

We believe that CoViNE can set the stage for further
research investigations. We intend to investigate the problem
of ensuring different levels of connectivity for the VLinks in a
VN, which can empower a VN-operator to offer a wide variety
of Service Level Agreements to its customers. We also want
to extend our current solutions by considering SLinks’ spare
bandwidth allocation, SNodes’ throughput, and substrate path
length constraints in a coordinated manner.
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