
Peer-to-Peer Netw. Appl.
DOI 10.1007/s12083-014-0258-2

A taxonomy of decentralized online social networks

Shihabur Rahman Chowdhury · Arup Raton Roy ·
Maheen Shaikh · Khuzaima Daudjee

Received: 27 January 2013 / Accepted: 27 February 2014
© Springer Science+Business Media New York 2014

Abstract Despite their tremendous success, centrally con-
trolled cloud-based Online Social Networks (OSNs) have
inherent issues related to user privacy and control. These
issues have motivated researchers to make a paradigm shift
in the OSN architecture by proposing to replace centrally
controlled OSNs with Decentralized OSNs (DOSNs) in a
peer-to-peer setting. DOSNs give users more autonomy and
the chance to participate in social networks without loosing
control over their data. The various DOSN proposals have
significant differences in their proposed services, architec-
ture and extent of decentralization. In this survey, we study a
number of proposals for peer-to-peer DOSNs, distil a set of
criteria to compare them, and provide a taxonomy for their
comparison.

Keywords Peer to peer system · Online social network

1 Introduction

Social networks result from social interactions between
groups and individuals. The advent of social networking

S. R. Chowdhury (�) · A. R. Roy · M. Shaikh · K. Daudjee
David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON, Canada
e-mail: sr2chowdhury@uwaterloo.ca

A. R. Roy
e-mail: ar3roy@uwaterloo.ca

M. Shaikh
e-mail: m7shaikh@uwaterloo.ca

K. Daudjee
e-mail: kdaudjee@uwaterloo.ca

sites like Facebook, Twitter, and Flickr has taken social
networking to Internet scale. These OSN sites attract a
majority of the Internet users. According to Nielsen’s Social
Media Report 2011 [1], around 80 % of active Internet
users daily visit one of the OSN sites everyday. Most of
the mainstream OSN sites provide free storage for users
to upload and share their social content such as pho-
tos, videos, blogs, etc. The popularity of OSN sites along
with their storage and sharing facilities are influencing the
trend of content sharing over the Internet. Instead of using
free or paid file hosting services (e.g., MediaFire, Rapid-
Share, etc.), people are using OSN sites as a means for
storing and sharing content with their social peers. Face-
book is currently the largest OSN site with more than
one billion active users [2]. It maintains more than 100
petabytes of online storage and stores more than 100 billion
images [3].

However, all of the mainstream OSN providers have a
cloud based infrastructure that is controlled by a single
authority (e.g., Facebook’s thousands of servers are under
the control of Facebook authority only). That authority can
gain ownership of the user’s content to some extent [4] and
use it for their business purpose. Despite the immense pop-
ularity and free services provided by these OSN sites, their
centralized nature is bringing imbalance to the Internet’s
ecosystem in many ways. First, the centralized architecture
requires the users to upload their social content to a cloud
based storage, which is under the control of a central author-
ity. While cloud based storage itself can be distributed over
a large number of servers, these servers are controlled by
a single authority, thereby providing a single system image
to the end users. This poses serious threats to the user pri-
vacy and content ownership. For example, many OSN sites
use their users’ data to feed the advertisement industry.
Second, centralized cloud based storages are also creating

mailto:sr2chowdhury@uwaterloo.ca
mailto:ar3roy@uwaterloo.ca
mailto:m7shaikh@uwaterloo.ca
mailto:kdaudjee@uwaterloo.ca

Peer-to-Peer Netw. Appl.

data silos in the Internet [27]. Because of the closeness and
lack of interoperability between OSN sites, users cannot
share their data between different sites. For example, users
cannot share their uploaded photos in Facebook with their
friends in Google+ without re-uploading their photos in
Google+. Because of the lack of interoperability there is also
no common framework or API for developing social appli-
cations. Developers need to develop the same application
using different APIs provided by different OSN providers
to make their application available on different OSN plat-
forms. Finally, OSN providers reserve the right to change
the terms and conditions of usage at any time and the users
have to agree with that.

The limitations posed by the centralized nature of OSNs
have motivated the research community to develop alterna-
tive OSN architectures. The main theme of these alternative
proposals is to give OSN users more autonomy in terms
of storing and controlling the access rights of their con-
tents. Most of these proposals advocate a decentralized
peer-to-peer (P2P) architecture where an OSN infrastruc-
ture is formed through participation by a set of autonomous
OSN users collaborating with each other. As a result, users
can have more control over where their contents will be
stored and how they will be accessed. This, in turn, gives
users freedom to participate in any OSN without the need to
migrate their data between different systems.

An early proposal [27] describes the limitations that
centralized OSNs impose and proposes a decentralized
architecture for federating the centralized OSNs as a first
step to solve these problems. Marcon et al. conducted
a measurement study to show the feasibility of sharing
social content from users’ homes [28]. PeerSon [15], the
first complete architecture for a DOSN was proposed in
2009. In the following years, there have been a num-
ber of proposals for DOSN architectures [12, 16, 20,
32, 38, 40]. Apart from architectures, a good number
of research effort has also been put towards particular
issues for DOSNs [11, 13, 21–23, 37]. The decentraliza-
tion offered by these systems results from the peer-to-peer
nature of the proposed architecture. Therefore, we con-
sider the terms decentralized and peer-to-peer equivalent
and refer to these systems as Decentralized Online Social
Network (DOSN) in rest of the paper. Different projects
offer different degrees of decentralization and address dif-
ferent subsets of issues related to the live deployment of
DOSN. This has motivated us to study a representative set
of existing works in this field, distil a set of criteria for
comparing these works, and finally compare and contrast
the selected works based on the criteria. Prior work [17]
surveys DOSN architectures in addition to some decentral-
ized systems in the context of social P2P file sharing. In this
survey, our primary focus is on systems that provide social
networking features. Additionally, we include a discussion

of more recent systems and, in contrast to [17], identify a
set of criteria that we use to construct a taxonomy for the
classification of DOSN architectures.

The rest of the paper is organized as follows. First, we
briefly describe a number of DOSN proposals (Section 2).
Second, we present a set of criteria for comparing differ-
ent DOSN proposals along with specific issues to consider
for each (Section 3). These issues serve as alternate design
choices for implementing a DOSN. Third, we use these
alternate options for each criteria to show how different pro-
posals have adopted different classes of design choices to
achieve particular goals (Section 4). Finally, we conclude in
Section 5.

2 DOSN: the current picture

The privacy concerns and closed nature of existing OSNs
have motivated researchers to come up with different pro-
posals for DOSN. In this section, we present a brief dis-
cussion on a number of proposals found in the literature
(Table 1). These projects present sufficient variation in their
architecture, proposed services and design choices.

2.1 P2P social networking (PeerSon)

PeerSon [15] is one of the early prototypes of DOSN.
This prototype was implemented based on the ideas devel-
oped in [14], where the authors discuss some challenges for
decentralizing OSNs and provide some preliminary solu-
tions for them. The prototype implementation supports user
login procedure and file sharing service among social peers.

PeerSon proposes a two tier architecture that decouples
user contents from the control infrastructure (Fig. 1). The
lowest tier consists of users and their contents. Users can
store their content on their own storage system and they can
directly exchange contents among themselves. The upper

Table 1 List of DOSN systems

System Name Reference Year

P2P Social Networking (PeerSon) [15] 2009

Featherweight Entangled Timelines over [35] 2009

HTTP Requests (FETHR)

SafeBook [16] 2009

PrPl [36] 2010

Cuckoo [41] 2010

Vis-á-Vis [38] 2011

SuperNova [40] 2012

Cachet [31] 2012

Peer-to-Peer Netw. Appl.

Users and Contents

DHT

User A
(online)

User B
(online)

User C
(offline)

Message propagation for Lookup User B

Indexing Peer

Indexing Peer Storing C’s offline content

Message propagation for Sending Instant
Message to User C

Content Transfer

Fig. 1 PeerSon architecture

tier provides lookup services (e.g., find friends, find con-
tents), stores users’ meta-data, and keeps the updates for
a user during that user’s offline period. The authors pro-
pose to use a structured P2P overlay, i.e., a Distributed

Hash Table (DHT) to implement the lookup service. The
prototype implementation of PeerSon uses OpenDHT [34]
service deployed on PlanetLab [5]. However, the imple-
mentation choice of the lookup service is not restricted to
DHT, rather it is open ended. This open ended choice for
implementation allows going from single authority con-
trolled to completely decentralized lookup service. How-
ever, this lookup service does not store users’ private data
and contents; it stores only the meta-data necessary for
serving lookup queries.

Identity management and privacy control in PeerSon
assumes the existence of a Public Key Infrastructure (PKI).
Users encrypt their content with the public key and dis-
tribute the key to the intended audience. Contents become
accessible only to those who have the right key. In this way,
users can have fine grained control over the access rights of
their contents.

2.2 SafeBook

Safebook [16] proposes a three tier architecture for DOSN
with the main focus on privacy, integrity and availability
(Fig. 2). The lowest tier consists of the users and their social
relationships. This tier handles data storage, content avail-
ability and communication privacy. A P2P overlay on top of
the social networking tier provides the application services

Internet

DHT

User A User B

Users, Social
Relationships, and
Replication Groups

P2P Overlay

Communication &
Transport

Matryoshka
(User A)

Matryoshka
(User B)

Friendship Relation

Replication Group
Member

Core

Fig. 2 Safebook architecture

Peer-to-Peer Netw. Appl.

(e.g., lookup service). The Internet sits in the topmost tier
providing communication and transportation services.

At the core of operations in the social networking tier lies
a per user logical concentric structure of other SafeBook
users that is referred to as Matryoshka [16]. The centre
or innermost user of a Matryoshka is known as the core.
The innermost logical circle consists of the core’s direct
social peers (e.g., friends). Users in successive logical rings
are logically connected by friendship or trust relationships.
The innermost circle acts as the core’s replication group
to ensure high content availability for the core. The out-
ermost circle handles the requests for accessing data at
the core and forwards the requests to inner layers until it
reaches the core. A user’s data is kept encrypted in the
replicas to ensure privacy and security. The Matryoshka
ensures that the path to a user is through its trusted peers
only.

The architecture of the P2P overlay in Safebook is
similar to the KAD network [6] (an implementation of
Kademila P2P Overlay [29]). This overlay provides users
with various application layer services, e.g., lookup and
identity management service. A service in the P2P over-
lay named Trusted Identification Service (TIS) manages
user identities and provides identifiers and pseudonyms
to new users. Identifiers are used in the social network-
ing layer, whereas pseudonyms are used in the P2P over-
lay. Any communication to and from a user is done
using the encryption and the decryption of the pseudo-
nym’s public and the private key, thus ensuring mes-
sage integrity and confidentiality. After getting an iden-
tity, a new user starts the process of creating their
Matryoshka by sending requests to their friends or trusted
peers.

2.3 PrPl

PrPl [36] aims to build a DOSN with fine grained pri-
vacy control and also provides an API for social application
development that can run across different administrative
domains. PrPl allows the users to store their content (e.g.,
photos, music, status updates) in devices of their choice.

A user’s distributed storage is federated by a per user ser-
vice named Personal Cloud Butlers [36]. This butler service
keeps track of the location of the contents and gives a sin-
gle system image of the underlying distributed storage to
other users (Fig. 3). The butler service is also responsible
for enforcing privacy control, storing a user’s private data,
maintaining list of friends, i.e., trust relationships, and com-
municating with other users’ butler services to access their
content.

PrPl relies on the OpenID [33] service for identity man-
agement. OpenID is a decentralized user centric identity
management system with an underlying philosophy to pro-
vide a single virtual identity for each user. This system is
responsible for ensuring the authenticity of the butler ser-
vices. The butler services provide fine grained per user
privacy control. The butler service provides its owner the
provision to set per user access level to each individual’s
content. Thus, it becomes possible to allow/deny incoming
access requests to individual content for individual users.
PrPl assumes that this butler service and user’s personal
storage will be deployed on devices with relatively higher
uptime, e.g., home gateways, set top boxes, gaming con-
soles, etc. Based on this assumption, PrPl does not provide
any replication or caching mechanism to ensure high avail-
ability of the butler service and the user’s storage system.
Note that the butler service is a single point of contact for
a user. Therefore, it is a potential scalability bottleneck for
users with large numbers of friends.

One of the major contributions of PrPl is SociaLite [36],
an expressive query language to develop social applications
on top of the DOSN. SociaLite allows applications to query
data from the butler services running across different admin-
istrative zones. A prototype implementation of a social
music streaming application built on top of PrPl using the
SociaLite query language has also been demonstrated [36].

2.4 SuperNova

SuperNova [40] proposes a DOSN architecture based on
the concept of super peers. SuperNova allows users to be
part of the OSN and to share their content while retaining

Fig. 3 PrPl architecture

Personal
Cloud
Butler

OpenID
Service

Personal
Cloud
Butler

User A User B

Peer-to-Peer Netw. Appl.

Super Peer Regular User/Peer

Storekeeper A
(replica)

Storekeeper B
(replica)

Storekeeper C
(replica)

Fig. 4 SuperNova architecture

full content ownership. Moreover, users can impose public
(accessible to all), private (accessible to none) or protected
(accessible to a subset of friends) access on all of their
contents. In SuperNova, super peers actively participate in
the formation of the OSN’s control infrastructure. Super-
Nova users can store their content on their own machines.
However, a user’s storage system might not be highly avail-
able, e.g., a cellphone which might not have 24×7 Internet
connectivity. To deal with this issue, users can replicate
their contents to a set of other users known as Storekeepers
(Fig. 4). Super peers in the system track the availability pat-
tern of users assigned to them. A super peer for users helps
the users to choose their storekeepers by providing them
with the availability pattern of other users. A user selects
another user as its storekeeper when it can reach an agree-
ment with the invited user. During a user’s uptime, updates
on its contents (e.g., comment on photos, videos etc.) are
forwarded to that user only. The replicas are updated when

the user goes offline and handle subsequent updates until
the user becomes online again. To ensure data privacy, data
is encrypted in the replicas. When a new user joins the sys-
tem, its super peer provides temporary storekeeping service
until the new user forms replication groups.

Super peers are the basic building blocks of the Super-
Nova architecture. They are responsible for providing
lookup service (e.g., find potential replica, find friends),
storage service, book-keeping service, recommendation ser-
vice to a subset of the system’s users, and to keep track
of these users’ replicas. Participation in the system costs
them computational power, network bandwidth and stor-
age space. The authors briefly discuss an advertisement
based incentive for the super peers, whereby the super peers
may put advertisements on the user profiles to gain mon-
etary benefit. However, the proposed incentive models are
not very concrete and a more concrete incentive model is
required to strongly motivate users to provide super peer
service at the cost of their resources.

2.5 Vis-á-Vis

Vis-á-Vis [38] provides a decentralized location-based
social networking service. It proposes to use cloud com-
puting facilities such as Amazon EC2 [7] instead of using
personal workstations to achieve high availability of user
services. The virtual machines running on the cloud, called
Virtual Individual Servers (VISs) [38], provide storage and
computation services for users. Figure 5a shows the archi-
tecture of Vis-á-Vis. Users store their personal data in their
trusted VIS without any encryption. A user can become
member of one or more groups and share geographical
location with group members. A group is the unit of author-
itative domain in Vis-á-Vis, i.e., a group is the smallest unit
under the control of a single authority. Users have the free-
dom of choosing a different granularity level for location

VIS

User A

VIS

User E

VIS

User B

VIS

User C
Group 2Group 1

Group 1
Owner

Group 2
and 3

Owner

VIS

User D

Group 3

Membership
Service

Location Tree

… ...
…

Group 1

Membership
Service

Location Tree

… ...
…

Group 2

Membership
Service

Location Tree

… ...
…

Group 3

CM CA CV

ON QC

Wat Wel

P1 P2 Pn

U1 U2 Um

…

……

…

…

… …Country

Province

City

Place

User

QC

Alm Mon… …

… …

View of U1

Quebec coordinator view

Message to Quebec coordinator
Quebec coordinator forwards query
to Montreal coordinator

Accumulated result from Montreal
coordinator
Reply to user

Queries and replies from the subtree

(a) Vis-a-Vis architecture (b) Search query for all users of Montreal
 city (figure adapted from [38])

Fig. 5 Vis-á-Vis

Peer-to-Peer Netw. Appl.

sharing, such as coarse granularity (e.g., city) or fine gran-
ularity (e.g., geographical coordinate). Users can also have
different granularity levels for different groups. Groups are
created and administered by a user. A group owner’s public
key is used to identify that group. The corresponding pri-
vate key is stored in the group owner’s VIS. On the other
hand, the public key of the group and IP address of the cor-
responding VIS are broadcasted throughout the network so
that any user of the network can request to join the group.

The initial architecture of Vis-á-Vis was based on a
two tier DHT [39]. The upper tier was used for indexing
all the VISs while the lower tier was used for indexing
the groups in the system. This architecture changed later
to support range queries for location-based services. For
facilitating these services, information about each of the
subdivisions of location covered by the group is stored in
a tree structure known as location tree [38]. Each inter-
mediate node of the location tree represents a subdivision
of a region. A user’s VIS becomes a leaf of the location
tree according to the location it shares with the group. If a
user shares a coarse location with a group then its VIS is
stored randomly below the intermediate node correspond-
ing to the user’s shared location. Moreover, a coordinator
(a VIS) is assigned to each intermediate node of the loca-
tion tree for processing the search queries intended for
the subtrees under it. The coordinator of a node is elected
from all the coordinators of its children using a distributed
consensus protocol such as Paxos [26] for a predefined
lease period. Zookeeper [8] is also used as a distributed
coordination service. For extending the lease period, each

coordinator issues periodic lease-renewal messages using
multicast. Each group also has membership service for sup-
porting the admission policy of the group. In addition, mem-
bership service stores a reference to the group’s location
tree.

A Vis-à-Vis user stores a subgraph of the location tree
for each of the groups that it belongs to. This subgraph
contains the user’s neighbours (which are sharing the same
place), and all nodes and their siblings on the path from the
user’s node to the root of the location tree. Moreover, the
VIS keeps information about the regional coordinators for
all non-leaf nodes of this subgraph. Figure 5b shows the
steps of the search query of a user U1, and the search initia-
tor, for finding all the Montreal users. The query first goes
to the coordinator of Quebec, the initiator’s nearest regional
coordinator whose geographical territory covers the loca-
tion of the query. The coordinator of Quebec forwards the
message to Montreal’s coordinator. Montreal’s coordinator,
in turn, queries all of its subtrees, accumulates the response
messages, and returns the aggregated message to the coor-
dinator of Quebec. Finally, Quebec’s coordinator returns the
intended result to U1.

2.6 Cachet

Cachet [31] is a purely decentralized OSN where users col-
laborate with each other to store their contents without any
centralized service. It is built on top of DECENT [24] and
improves on DECENT’s high latency of feed generation.
Figure 6 shows its basic architecture along with the current

DHT

Read Only Relationship
Decrypted Message Dissemination by
Gossip

Read Encrypted Post

Read/Write Relationship

Wall of
User A

User A

User B

User D

User E

User F

User C
A post of
User A

Comment
by User B

DHT

User A

User B

User D

User E

User F

User CA post of
User A

Post Read
by User D

Data Storing
Social

Caching

Plain Text

Encrypted

Fig. 6 Cachet architecture

Peer-to-Peer Netw. Appl.

modification in content dissemination. In DECENT, users
of the network form a DHT for storing container objects.
A container object is the unit of access control in the sys-
tem. This object stores the actual content and may contain
references to other container objects. For example, a con-
tainer object for a post by a user contains the corresponding
text and also references to other container objects for each
of the comments on the post. Moreover, sometimes content
can take the form of references to other container objects.
A typical example of this is a photo album in which the
corresponding container object stores the references of the
containers of all of its photos. All container objects use ran-
domly generated identifiers for placement in the DHT and
are stored with encryption in the storage nodes.

Owner-defined read, write, and append policies stored
with the object metadata dictate the access control mech-
anism on the object. These policies can depend on user
identity and/or the group for which the content is accessible.
A user generates several encryption key pairs for each of the
policies. Upon formation of a relationship, any user (user A)
provides another user (user B) with an encryption key based
on the mode of relationship. This encryption key governs
accessibility of user B to either all or a subset of the con-
tents of user A in the network. User B, in turn, also supplies
a key to user A for accessing their content. However, the
capabilities of the encryption keys exchanged by both users
may not be the same, resulting in an asymmetric relationship
among the users. An authorized user can locate a friend’s
data in DHT and decrypt it using the provided key by the
owner. If permitted, any user can append to the content of

their friend. Actual data of the append is stored as a sepa-
rate container object in DHT and reference to this object is
inserted in the container object of the previously read data.
This newly created container object is also encrypted with a
secret key from its owner and can be read by only those who
are supplied with the corresponding public key.

The container level encryption technique in the basic
architecture of Cachet requires costly decryption operations
of several contents from a user’s social contact during the
generation of its news feed. To improve the response time,
the authors augment the basic architecture of Cachet with
social caching. In this method, each user node maintains a
continuous secure connection with all of its online social
contacts. Any node satisfying the attribute-based policy for
a specific content can cache that content. Moreover, the
node can provide this cached and decrypted data to other
nodes, which also satisfy the policy. The latter feature also
accelerates content retrieval when the owner of the content
is offline. For maintaining a live connection with online
users, a list called presence list is stored in a DHT [31].
The presence object, an entry in the presence list, is updated
exclusively by the owner whenever it joins or leaves Cachet.
For avoiding encryption, presence objects are also cached
and disseminated using a gossip-based protocol.

2.7 Peer-to-peer microblogging

A number of architectures have been proposed in the litera-
ture for decentralized microblogging having similar features
as found in Twitter. The first project of this kind was

Publisher to Subscriber Relation
Message Dissemination by Gossip

User (publisher / subscriber)

HTTP Service for supporting
FETHR Protocol

(a) FETHR

DHT

Friendship Relation
Message Dissemination by Gossip
Publisher to Subscriber Relation

(b) Cuckoo

Fig. 7 Decentralized micropublishing architecture

Peer-to-Peer Netw. Appl.

Featherweight Entangled Timelines over HTTP Requests
(FETHR) [35]. Later, Cuckoo [41], another decentralized
microblogging system was released as an enhanced version
of FETHR. In the rest of this section we describe these two
systems in detail.

2.7.1 FETHR

FETHR [35] proposes a gossip-based decentralized microp-
ublishing architecture (Fig. 7a) and is the first attempt
to propose a DOSN similar to Twitter. The main con-
tribution of this project is a HTTP-based communication
protocol that allows the users to communicate with each
other directly. FETHR supports Twitter-like features such as
“following”, and “tweeting”.

A FETHR user can subscribe to other user’s updates
through simple HTTP GET and POST messages. Content
publication follows a push based model where publishers
push their updates directly to their subscribers. To mitigate
the update propagation overhead of the broadcasters in the
network, FETHR proposes gossip-based update propaga-
tion where updates are pushed to a subset of subscribers
who in turn take the responsibility to push them to the rest
of the network. Pushed contents at the subscribers increase
the contents’ availability since they can be served from
there when the publisher goes offline. Content authentic-
ity is ensured by including the hash of all prior events
(publication, subscription) at a publisher into the content.

FETHR does not address a number of practical issues.
For example, the HTTP-based communication protocol
between users uses URL for communication. However, the
process of resolving these URLs to user machine addresses,
which can be behind NATs, or the user’s overhead for man-
aging and running HTTP services have not been addressed
by FETHR.

2.7.2 Cuckoo

Cuckoo [41] proposes a decentralized micropublishing
architecture and supports Twitter like services, e.g., sub-
scriptions, microblog publications. But unlike its predeces-
sor FETHR, Cuckoo has a structured architecture (Fig. 7b).
Cuckoo creates a structured overlay (DHT) of its users to
implement a lookup service. A newly joined user or an exist-
ing user can use this lookup service to find other users.
However, this lookup process does not depend purely on
the DHT, rather it follows a hybrid approach. The hybrid
approach combines DHT’s capability of guaranteed and
efficient lookup of rare objects and of using flooding for
fast lookup of popular objects. Cuckoo architecture adopts
a push strategy to publish microblogs. The publishers use a
gossip-based publication strategy similar to that of FETHR.
The pushed contents in the subscribers act as a replica of the

original content and increase the original content’s visibility
during the offline period of the publisher.

The main difference between Cuckoo and its predeces-
sor, FETHR, is the DHT. FETHR does not provide any
details regarding user management in a decentralized set-
ting. Cuckoo addresses this issue by using a DHT. The
DHT is formed by direct participation from the system’s
user, and thus, system operations do not rely on any cen-
tralized service and are not controlled by any centralized
authority.

3 Comparison criteria

In this section, we present the set of criteria for comparing
different DOSN proposals. For each criteria, we also discuss
the specific issues that need to be taken into consideration
for comparing them.

3.1 Architecture

The first criteria for comparison is the architecture of differ-
ent DOSNs, i.e., how the different system components are
organized to achieve the system’s goals. In DOSN context,
we particularly focus on the organization of the following
system components:

– Control: The control part of the architecture consists
of lookup services (both user and content lookup) and
identity management services.

– Storage: The storage part of the architecture con-
sists of storage of user’s content and ensuring its high
availability.

The organization of these components closely resembles
that of P2P systems, and thus we have the following high
level classification:

– Structured: Users directly participate to form a struc-
tured overlay or use services provided by a third party
structured overlay. Any query in the system can be
resolved using the structured overlay in a bounded
number of steps.

– Semi-structured: A subset of all the users in the system
(super peers) take responsibility for storing the index
and managing other users. The super peers are responsi-
ble for providing the interface to the rest of the users for
carrying out different system operations. User partici-
pation for providing super peer service can be voluntary
or incentive-based.

– Unstructured: No user in the system maintains an
index, and system operations are usually carried out
using flooding or gossip-like communication between
users.

Peer-to-Peer Netw. Appl.

Table 2 Different types of OSN service

Service Type

Micropublishing Read only

Commenting Read-write

Multimedia Content Sharing Read only

Newsfeed Read only

Instant Messaging Read-write

It is to be noted that a system can have different archi-
tecture for its different components, e.g., structured control
and unstructured storage.

3.2 Types of service

Our set of DOSN systems provide different subsets of the
services provided by the existing OSNs. Based on the type
of operation a user can perform on other user’s personal dig-
ital space, we have classified the services into the following
two classes:

– Read only services: allow users of an OSN to view
other users’ content. It does not allow any user to
write anything in other user’s personal digital space.
For example, the capability to only view another user’s
shared photos is a read only service.

– Read-Write services: allow users of an OSN to write
into other user’s personal digital spaces. For example,
the capability to view and make a comment on other
users’ shared photos is a read-write service.

Table 2 gives a non-exhaustive list of different services
that we shall take into account while comparing different
DOSNs.

3.3 Social application development API

The existing OSNs provide developers with a set of APIs
to develop social applications on their platform. The large
user base of OSNs combined with the provided APIs have
made them a popular platform for application develop-
ment. These social applications also have a large active user
base. For example, Zynga, the largest social games com-
pany reports having a monthly active user base of more than
230 million [9]. Even after decentralization, an application
development API will remain an attractive feature of OSNs.
Based on the types of services the APIs provide, we have the
following classification of social application development
API:

Social Graph Access API: allows querying of data from
the underlying social graph, e.g., getting list of friends,
finding mutual friends, etc.

User Meta-data Access API: accesses user’s meta-data
based on the user’s privacy settings, e.g., user’s demo-
graphic information
User Control API: allows automating social net-
work activities, e.g., user authentication, content posting
etc.

3.4 Availability architecture

In centralized OSNs, providers ensure system availability
by providing dedicated servers and different fault toler-
ance mechanisms. However, in case of DOSNs, users have
the freedom of storing their content on the device of their
choice. These devices do not necessarily have high uptime
and they may be quite prone to failures. For example, a
user may choose to host some content from their cell phone,
which might not have 24×7 Internet connectivity and might
switch off if its battery dies. Therefore, ensuring 24×7
availability of users’ contents stored in a decentralized set-
ting is a challenging issue. Replication and caching are
proven techniques to ensure availability when the original
source of the content might not have high uptime. In the con-
text of DOSN we consider the following issues regarding
availability:

– Availability Mechanism: The DOSN proposals exhibit
two major classes of techniques to ensure availability:

– Replication and Caching: User content is
replicated and/or cached to a set of other users
so that they can act as a proxy when the content
owner is not online.

– Stable Nodes: The architecture assumes that
the storage system is highly available. This
assumption restricts user’s choice of storage
system. For example, home gateways and set
top boxes have storage capabilities and they
have higher uptime compared to a cellphone or
laptop.

Despite the above mechanisms, some of the DOSN
proposals do not address the issue of ensuring high
availability at all.

– Replica Selection Policy: If the DOSN supports repli-
cation of a users’ contents then the choice of replica
placement is another important issue to consider. In
the context of DOSN the following policies for replica
placement are possible:

– User selected replicas based on trust relation-
ship of a user with other users.

– System selected replicas based on some
parameters, e.g., user’s availability pattern.

– User driven replication, where replication is
performed based on subscription from users.

Peer-to-Peer Netw. Appl.

– Replica Synchronization: If user content is replicated
then keeping a single image of all the copies is also an
issue.

3.5 Scalability

Scalability is measured as a system’s ability to provide
good or reasonable performance according to some met-
ric under large loads. In the context of DOSN, indi-
vidual users become part of the infrastructure and they
have some storage, bandwidth and processing loads. In
an OSN, users and their contents are the major load
for the whole system. In a decentralized setting, the fre-
quency of a user going online and offline, i.e., churn,
also puts some overhead on the system components.
Thus, the following load parameters are important for a
DOSN:

– Number of users in the system
– Number of friends of a user
– Volume of contents of a user
– Volume of contents in the system
– Churn rate

To analyse the scalability of a system we have focused
on the change of the aforementioned parameters on the
following performance metrics for each user:

– Network Bandwidth
– Storage
– Update Overhead

3.6 Privacy control

Users can utilize privacy control mechanisms to control the
degree to which their data is visible to other users of the
OSN. An OSN service provides different privacy policies
for the stored content in the network. The granularity level
of visibility of a post can range from public to specific user.
Enforcement of privacy can be done per post or on a global
basis. The per post privacy enforcement obviously offers
the greatest flexibility to users. Dynamic change in the pri-
vacy of content is also another concern that gives users
the ability to modify the visibility of their contents at any
time.

3.7 Security model

In OSN, a user shares a common platform with a vast num-
ber of unknown users for storing personal data and for
communicating with other users. A number of user based
studies [19, 42] have shown that OSN users tend to cre-
ate social relationships through OSN sites even with weaker
trust and privacy measures. The studies also show that OSN

users tend to disclose private information regardless of pri-
vacy concerns. This situation is further complicated by third
party social applications and the presence of Sybil users
in the network. Krishnamurthy et al. [25] studied different
ways for personal information leakage in social networks,
and identified transmission of user data to third party servers
as one of the potential causes of private information leak-
age in OSN. Under these circumstances, OSNs need to have
robust security features to protect user’s personal data while
putting least possible responsibility on users to customize
their privacy settings for maximum security. As many of the
DOSNs store data in storage nodes of different administra-
tive domains, the concern for territory of security widens
in this decentralized scenario. In the context of DOSN, we
focus on the following security issues:

– User Authentication: For identifying the legitimate
users in the system, every user should go through the
user authentication process. The system has to provide
legitimate users with the credentials to communicate
with it.

– Confidentiality: Disclosure of data to unauthorized
personnel should be prevented by the system. No infor-
mation regarding the messages exchanged among users
or between a user and the system should be exposed
to a third party. This end-to-end data confidentiality
should be supported by secure communication. More-
over, encryption can be used to keep data on separate
storage nodes of different administrative domains to
protect them from being read by unauthorized parties.

– Data Integrity: Upon receipt of data, users should
verify whether the content has been changed during
transfer. If data are stored in a place other than the user’s
premises, the system should also consider the preven-
tion of unauthorized modification of data at the storage
node. Digital signature is one of the possible solutions
to verify the integrity of the content.

– Resilient to attack: Social networking sites become an
attractive target for attackers due to the huge amount of
personal information that they store. Denial of Service
(DoS) is a prevalent form of attack for disrupting the
service of the system. Moreover, a user can create fake
identities (Sybil attack [18]) for exploiting the shared
resources unfairly and influencing other users to ful-
fill its intention. A DOSN feature for identifying and
protecting against these forms of attack will make the
system more trustworthy.

3.8 Business model

In traditional OSNs, users are offered free service with the
illusion of infinite storage space by the provider. The ser-
vice provider benefits financially by allowing the business

Peer-to-Peer Netw. Appl.

entities to show tailored advertisements to the users based
on their pattern of interaction in the network. However, in
the case of DOSN, the original idea was to establish an
online community from voluntary participation of the users.
A user in the network stores data of other users and does
computation for them because he/she is also getting the
same services from others in return. This voluntary model
of DOSN can be augmented where users with higher stor-
age and computation capacity and network bandwidth can
offer service to the social network. Other than using a per-
sonal computing node, any user can avail this service with
payment or by allowing advertisements depending on the
agreement.

4 Comparative classification

In this section, we provide a comparison of the described
systems with respect to the criteria presented in Section 3.

4.1 Structured vs. semi-structured vs. unstructured
architecture

The control and storage of the surveyed DOSN systems
can be classified into three categories as described in
Section 3.1. Table 3 gives a classification of these systems
with respect to their architecture.

Most of the proposals for DOSN use a structured P2P
overlay for control. SuperNova proposes to use a super peer
based semi-structured architecture, where each super peer
is responsible for the management of a number of regu-
lar users. The super peer provides lookup service, tracks
user uptime to recommend suitable users for replication,
manages its users’ replicas, and acts as a final backup in

Table 3 Classification of DOSNs by architecture

System Control Storage

PeerSon DHT DHT

Safebook DHT DHT

PrPl DHT Between Structured

& Semi-structured

Vis-à-Vis Tree like Tree like

Structured Structured

Overlay Overlay

SuperNova Super peer Super peer

Cachet DHT DHT

FETHR Unstructured Unstructured

Cuckoo Hybrid (both Unstructured

structured &

unstructured method)

case all replicas of a user fails. FETHR has a decentral-
ized control architecture. On the other hand, Cuckoo has a
hybrid architecture; its lookup services take advantage of
both structured and unstructured architectures. The struc-
tured lookup provides guaranteed lookup of rare items;
whereas, the unstructured lookup provides fast discovery of
popular items.

Storage and replica management in FETHR and Cuckoo
is unstructured. Both systems use flooding or gossip-based
protocol for the updates, which are not efficient in terms of
network bandwidth. PrPl’s storage architecture lies between
structured and semi-structured. PrPl allows users to store
the contents in a decentralized and unstructured manner.
The decentralized storage is federated by a per user pro-
cess, which resembles the responsibilities of a super peer.
This storage structure gives users more flexibility for plac-
ing their content than that provided by other architectures.
In the other systems, users form a structured overlay that
manages their storage.

The main advantage of using structured or semi struc-
tured P2P overlay for control is its efficiency in terms of
network bandwidth over unstructured overlay. An unstruc-
tured overlay has almost zero management overhead with
more autonomy than the structured overlay. An interesting
observation is that systems that propose rigorous privacy
and security mechanisms stick to a structured architecture.
This is due to the fact that with a structured approach, it
is possible to give users sufficient autonomy while keeping
control over privacy and security.

4.2 Service types

Safebook, PrPl, FETHR, and Cuckoo support only read only
services. From a users point of view, these cannot write
anything to other users’ personal digital spaces. Therefore,
these proposals do not support services such as comment-
ing on other users’ content or instant messaging. Vis-á-Vis
provides location based services and allows users to share
their location with micropublishing. It also provides only
read only services. All other DOSN proposals support read-
write services and any user can write to other users’ personal
digital space based on the privacy level.

Note that FETHR and Cuckoo are tailored to support
only micropublishing. Therefore, these two DOSNs do not
support the sharing of multimedia content. The same applies
for Vis-á-Vis. Table 4 gives a summary of different services
provided by different DOSNs.

4.3 Social application development API

Some DOSN proposals have early prototypes whereas some
exist only as a proof of concept. Thus, none of the projects
discussed in the paper except PrPl provides a set of APIs

Peer-to-Peer Netw. Appl.

Table 4 Services provided by DOSNs

Service PeerSon Safebook PrPl Vis-à- Vis SuperNova Cachet FETHR Cuckoo

Micropublishing � � � � � � � �
Commenting � × × × � × × ×
Multimedia Content Sharing � � � × � � × ×
Newsfeed × � � � � × � �
Instant Messaging � × × × � × × ×

for application development. PrPl includes a query lan-
guage, SociaLite. SociaLite provides two types of APIs to
application developers, Social Graph Access API and User
Meta-Data Access API. Developers can use these APIs to
query relationship data from the underlying social graph and
user data across different administrative domains. PrPl also
demonstrates a social music sharing application developed
using SociaLite.

4.4 Availability architecture

In a DOSN, the content is stored at user devices hav-
ing relatively lower uptime compared to a dedicated cloud
based storage. Therefore, ensuring content availability is
a challenging issue in a DOSN. The authors in [30] per-
formed trace based simulations to study the effect of various
parameters on the content availability in DOSN. These
parameters include user uptime, number of replicas and
replica placement policy. Apart from global availability, the
authors also consider the availability of users’ contents to
only their friends. They study three different replication
strategies where the replicas are placed greedily to max-
imize a content’s availability, at the most active friends
of a user, and randomly. Their study shows that placing
replicas at most active friends with a 40 % replication
factor yields high availability of users’ contents to their
friends.

PeerSon acknowledges the availability issues in DOSN,
however, it does not provide any mechanism to ensure high
content availability in the system. The other projects adopt
two approaches to increase availability of the contents. One
approach is that the user level processes are assumed to
be deployed on stable infrastructure that have relatively
higher uptime. PrPl and Vis-à-Vis follow this model. PrPl
assumes that the user level processes and storage will be
deployed on home gateways, set top boxes, gaming con-
soles or user’s trusted free or paid hosting services that are
online most of the time. Vis-à-Vis is based on virtual servers
running on Amazon EC2 infrastructure, which have very
high uptime [10]. This approach eliminates the bandwidth
and storage overheads associated with replica management.
On the other hand, it restricts a user’s option for hosting
contents.

The other approach is to replicate a user’s content to
a number of other users that can serve as a proxy when
the user goes offline. All other projects except PeerSon,
PrPl, and Vis-à-Vis follow this approach. Two important
issues related to replication are the replica selection policy
and the replica synchronization mechanism. Of the pro-
posed DOSNs, only Safebook allows a user to create a
replication group based on the trust or friendship relation-
ship with other users. Users follow an eager (synchronous)
approach to keep the replicas synchronized. Replica place-
ment in SuperNova and Cachet are decided by the system,
i.e., by the super peers and DHT nodes, respectively. A
similar DHT based replication scheme is proposed by the
authors in [37]. However, their key contribution is the con-
cept of β-availability groups, where at least β members of
a replication group are expected to be online at a given
instant. The structured overlay tracks the uptime for the
users and acts as a matchmaking agent for forming the
replication groups. Their simulation-based study shows that
2-availability groups can provide high resilience to failures
while requiring reasonable overhead for group formation. In
addition to replication, Cachet also uses caching to improve
content access latency and content visibility when the orig-
inal source is offline. SuperNova allows the update of
replicas whenever the user or one of the replicas go offline.

The decentralized micropublishing architectures have
a different replica placement policy. They use publish-
subscribe model and replicate users’ (publisher) content to
only their subscribers. They follow a gossip-based approach
to eventually propagate updates to the replicas. The even-
tual update propagation may cause the replicas to have
a stale copy for some period of time. The gossip-based
approach generates a large volume of network messages
during update compared to the other approaches. Forsyth
et al. also propose an update propagation and replication
scheme for decentralized microblogging [21]. The authors
propose to query for a microblog by random walk through
the social graph and cache both the data and path infor-
mation along the successful search path. Storing the path
information allows future updates to be applied along the
same path, therefore yielding consistent replicas. A recent
study by Asthana et al. [12] investigates the optimal num-
ber of replicas and their placement in the context of

Peer-to-Peer Netw. Appl.

Table 5 Comparison of DOSNs by availability models

System Availability Mechanism Replica Placement Replica Synchronization

PeerSon Not Addressed Not Addressed Not Addressed

Safebook Replication User Selected Eager

PrPl Stable Nodes No Replication No Replication

Vis-à-Vis Stable Nodes No Replication No Replication

SuperNova Replication System Selected Only During Failure

(Placed by super peer)

Cachet Replication & System Selected Not Addressed

Caching (Placed by DHT)

FETHR Replication User Driven Eventual

Cuckoo Replication User Driven Eventual

peer-to-peer microblogging. They also propose a gossip
based algorithm for placing the microblogs at a fraction of
the network to ensure its high visibility to other users. This
work tries to find a balance between the number of users
where a microblog is replicated and the number of users that
needs to be queried to find a microblog, while keeping the
bandwidth usage at minimum. According to their analysis
a microblog needs to be replicated to about 20 % and 6 %
users in a 10,000 and 100,000 user microblogging network,
respectively, to ensure high availability of the post while
requiring less bandwidth for future lookup.

A summary of different aspects of ensuring availability
in DOSNs is presented in Table 5.

4.5 Scalability

The ability of a DOSN to scale to the number of users, con-
tents, and churn is directly affected by its architecture, types
of services, and availability model.

An unstructured architecture that uses gossip or flooding
based techniques for query routing and update propagation
generates a large volume of network messages. An increase
in the number of users in the system will overwhelm the net-
work with messages and the per user bandwidth requirement
will increase as well. Since the uplink bandwidth of a user is
fixed in practice, per user network bandwidth for both con-
tent dissemination and update propagation may become a
scalability bottleneck in FETHR, Cuckoo and Cachet. How-
ever, FETHR and Cuckoo support micropublishing services
only and short microblogs are stored at the users. Thus repli-
cation does not incur very high storage overhead. Therefore,
an increase in the number of users or amount of content in
the system will not have a significant effect on the storage
overhead.

The structured and semi-structured architectures gener-
ate a much lower number of network messages than in
unstructured architectures due to the informed nature of

routing. These structured architectures generally exhibit a
logarithmic relation between the number of messages and
the number of users in the system. With an increase in
the number of users there is little increase in the num-
ber of generated messages in the system. Hence, with an
increase in the number of users in the system, per user
network bandwidth does not become a scalability bot-
tleneck for the control part of PeerSon, Safebook, PrPl,
and Vis-à-Vis. However, network bandwidth can become
a scalability bottleneck for the broadcasters, i.e., users
with large number of friends or followers in the system.
In the current DOSN proposals, systems with or without
replicas have a single point of entry for a user’s con-
tent. Therefore, network bandwidth can become a scalabil-
ity bottleneck for users with large numbers of friends or
followers.

When replication is used in a system, storage and update
propagation overhead is incurred to some extent. In a super
peer based semi-structured architecture such as SuperNova,
the super peers have higher storage requirements compared
to the users in the system because they provide backup for a
large number of users in case of failures of all of the users’
replicas. Therefore, the super peers may pose a potential
scalability bottleneck if the super peer network is not scaled
with the number of users in the system. Also, SuperNova’s
update-on-failure policy incurs high update overhead under
high churn rates. Thus, SuperNova does not scale well with
an increase in number of users and a high churn rate. On the
other hand, although Safebook also uses replication, most
of the Safebook users incur lesser storage overhead than
SuperNova. This is because of its policy of replicating con-
tent to very close friends, which are small in number for
most of the users. However, the broadcasters in Safebook
may require replicating the content of a large number of
users, suffering from scalability in terms of storage over-
head. On the contrary, storage does not pose a scalability
bottleneck for PrPl and Vis-à-Vis. In these architectures, it

Peer-to-Peer Netw. Appl.

Table 6 Scalability of DOSNs

System Network Bandwidth Storage Update Overhead

PeerSon Not Scalable for Not Addressed Not Addressed

Broadcasters

Safebook Not Scalable for Less scalable with Scalable

Broadcasters increasing content

PrPl Not Scalable for Scalable No Update Propagation

Broadcasters

Vis-à-Vis Not Scalable for Scalable No Update Propagation

Broadcasters

SuperNova Not Scalable for Not Scalable for super peers Not Scalable during

Boradcasters as number of users increase high churn

Cachet Not Scalable for Scalable Not Scalable

Boradcasters

FETHR Not Scalable for Scalable Not Scalable

Broadcasters

Cuckoo Not Scalable for Scalable Not Scalable

Broadcasters

is the users responsibility to manage storage for increased
content volume and there is no replication overhead. Scal-
ability of different DOSN systems are summarized in
Table 6.

4.6 Privacy control: per user to public

Vis-à-Vis is a location-based service offering only range
searches based on geographical location. The visibility of
a user is within the group(s) to which the user belongs.
FETHR and Cuckoo offer a micropublishing service where
a post of a user is visible only to its subscribers. Cachet
and SuperNova offer the best privacy control policy among
all the DOSN proposals. All three granularity levels of con-
tent visibility, i.e., public, group, and individual can be
used in both Cachet and SuperNova. This visibility level
can be enforced on a per post basis. In PrPl, a post of a
user has a dedicated viewer; thus it supports a per post
privacy enforcement policy. Safebook allows privacy con-
trol on group basis. However, PeerSon does not address the
privacy control issues. Privacy control features of different
DOSNs are summarized in Table 7.

4.7 Security

PeerSon assumes the existence of a PKI infrastructure to
ensure confidentiality and data integrity. PKI also provides
the required keys for data encryption for both storage and
communication. Similarly, SafeBook uses TIS to verify
a user’s legitimacy and provides private-public key pair
to the user. The message transferred through the network
is encrypted with the receiver’s public key. The sender
also signs the message with his private key. For resisting
Sybil attack [18], Safebook requires face-to-face meeting
or presentation of identity proof (e.g., passport) to the TIS
authority. On the other hand, Cachet uses symmetric key
and attribute based encryption techniques. The data is stored
in the DHT with encryption. For verifying the original-
ity of the content, the signature created by the owner is
stored along with the content. However, no identification
service is discussed in the proposal of Cachet. The but-
ler service of PrPl architecture stores data in encrypted
form in the storage node. OpenID service acts as the iden-
tification and certification authority for each PrPl user.
SuperNova stores data in super peers and storage nodes

Table 7 Privacy of DOSNs

Privacy Issue PeerSon Safebook PrPl Vis-à-Vis SuperNova Cachet FETHR Cuckoo

Content visibility Not Group Individual Group All All Group Group

Addressed

Enforcement mechanism Not Group Post Group Post Post Group Group

Addressed

Peer-to-Peer Netw. Appl.

Table 8 Security of DOSNs

System User Authentication Confidentiality Data Integrity Resilient to attack

PeerSon Using PKI Message transfer Sign with Not Addressed

with encryption private key

Safebook Using TIS Message transfer Sign with Sybil attack

with encryption private key resilient

PrPl OpenID Data stored Using digital Not Addressed

with encryption certificate

Vis-à-Vis Not addressed Message transfer with encryption Not addressed Not addressed

VIS stores raw data

SuperNova Not Addressed Data stored with encryption Not Addressed Not Addressed

Cachet Not addressed Encryption in storing and transfer With digital signature Not addressed

FETHR Not Addressed Not Addressed Using hash chaining Not Addressed

& digital signature

Cuckoo Not Addressed Not Addressed Not Addressed Not Addressed

using encryption to ensure privacy. In FETHER, the pub-
lisher includes the hash of all prior events into messages
to guarantee message authenticity. Moreover, data integrity
is ensured with hash chaining. Cuckoo does not address
the security issues. Finally, Vis-à-Vis stores the data in
trusted VISs without any encryption, but the data undergoes
encryption before transmission.

Almost all of the DOSN proposals consider encryption
to ensure security of users’ stored and communicated data.
However, encryption usually incurs both communication
and computational overhead. Bodriagov et al. [13] pro-
pose a set of criteria for evaluating encryption schemes for
DOSNs, and also evaluate a number of encryption schemes
based on these defined criteria. An interesting outcome
of the study is that none of the encryption schemes used
in the proposed DOSN architectures can achieve all the
efficiency criteria defined by the authors. To solve this
issue, the authors propose to use Broadcast Encryption (BE)
schemes.

The security features of different DOSN proposals are
summarized in Table 8.

4.8 Business model

All of the DOSN proposals except SuperNova adopt the vol-
untary business model. In the voluntary model, a user either
stores content in the leased node (PrPl, Vis-à-Vis) or partic-
ipates using his/her personal machine (PeerSon, SafeBook,
Cachet, FETHER, Cuckoo). There is no monetary incentive
involved in participation. On the other hand, the super peer
and storekeepers of SuperNova can have a financial bene-
fit by offering computing and storage facility to ordinary
users.

5 Conclusion

In this survey, we have studied different aspects of eight
DOSN proposals. While this set is not meant to be exhaus-
tive, it provides a wide coverage of different design choices.
We have distilled a set of criteria and specific issues related
to these criteria to compare different DOSN proposals.
Finally, we have provided a comparative analysis of the
DOSN proposals based on our proposed set of criteria. Our
survey can provide a rich knowledge base for researchers
and system designers in the fertile area of peer-to-peer based
online social networks.

Acknowledgments We would like to thank the anonymous review-
ers and Natalie Borsuk for comments that helped to improve the
presentation of the paper.

References

1. http://cn.nielsen.com
2. http://newsroom.fb.com/News/One-Billion-People-on-Facebook-

1c9.aspx
3. http://royal.pingdom.com/2012/01/17/internet-2011-in-numbers/
4. http://www.facebook.com/about/privacy
5. http://planet-lab.org
6. http://en.wikipedia.org/wiki/Kad Network
7. http://aws.amazon.com/ec2
8. http://hadoop.apache.org/zookeeper
9. wearsocial.net/blog/2010/06/rise-social-gaming/zynga

10. http://aws.amazon.com/ec2-sla/
11. Aiello LM, Ruffo G (2012) Lotusnet: tunable privacy for

distributed online social network services. Comput Commun
35(1):75–88

12. Asthana H, Cox IJ (2013) A framework for peer-to-peer micro-
blogging. In: 5th International workshop on peer-to-peer systems
and online social networks, (HotPOST 2013)

http://cn.nielsen.com
http://newsroom.fb.com/News/One-Billion-People-on-Facebook-1c9.aspx
http://newsroom.fb.com/News/One-Billion-People-on-Facebook-1c9.aspx
http://royal.pingdom.com/2012/01/17/internet-2011-in-numbers/
http://www.facebook.com/about/privacy
http://planet-lab.org
http://en.wikipedia.org/wiki/Kad_Network
http://aws.amazon.com/ec2
http://hadoop.apache.org/zookeeper
wearsocial.net/blog/2010/06/rise-social-gaming/zynga
http://aws.amazon.com/ec2-sla/

Peer-to-Peer Netw. Appl.

13. Bodriagov O, Buchegger S (2013) Encryption for peer-to-peer
social networks. In: Security and privacy in social networks.
Springer, pp 47–65

14. Buchegger S, Datta A (2009) A case P2P infrastructure for
social networks - opportunities and challenges. In: Proceedings
of WONS 2009, The sixth international conference on wireless
on-demand network systems and services, Snowbird, USA

15. Buchegger S, Schiöberg D, Vu L-H, Datta A (2009) Peerson: P2P
social networking: early experiences and insights. In: Proceedings
of the second ACM EuroSys workshop on social network systems,
SNS ’09, pp 46–52

16. Cutillo L, Molva R, Strufe T (2009) Safebook: a privacy-
preserving online social network leveraging on real-life trust.
Commun Mag IEEE 47(12):94–101

17. Datta A, Buchegger S, Vu L-H, Rzadca K, Strufe T (2010) Hand-
book of social network technologies and applications. Decentral-
ized online social networks. Springer

18. Douceur J (2002) The sybil attack. In: Peer-to-Peer Systems
(Lecture Notes in Computer Science), vol 2429. Springer Berlin,
Heidelberg, pp 251–260

19. Dwyer C, Hiltz SR, Passerini K (2007) Trust and privacy con-
cern within social networking sites: a comparison of facebook and
myspace. In: AMCIS, p 339

20. Famulari A, Hecker A (2013) Mantle: a novel dosn leveraging free
storage and local software. In: Advanced Infocomm Technology,
pp 213–224. Springer

21. Forsyth S, Daudjee K (2013) Update management in decentralized
online social networks. In 5th International workshop on peer-to-
peer systems and online social networks (HotPOST 2013)

22. Han L, Nath B, Iftode L, Muthukrishnan S (2011) Social butterfly:
social caches for distributed social networks. In: Proceedings of
SocialCom/PASSAT, pp 81–86

23. Han L, Punceva M, Nath B, Muthukrishnan SM, Iftode L (2012)
SocialCDN: caching techniques for distributed social networks.
In: 2012 IEEE International conference on peer-to-peer computing

24. Jahid S, Nilizadeh S, Mittal P, Borisov N, Kapadia A (2012)
DECENT: a decentralized architecture for enforcing privacy in
online social networks. In: 2012 IEEE international conference on
pervasive computing and communications workshops (PERCOM
Workshops), pp 326–332

25. Krishnamurthy B, Wills CE (2008) Characterizing privacy in
online social networks. In: Proceedings of the first workshop on
Online social networks. ACM, pp 37–42

26. Lamport L (1998) The part-time parliament. ACM Trans Comput
Syst 16(2):133–169

27. man Au Yeung C, Liccardi I, Lu K, Seneviratne O, Berners-lee T
(2009) Decentralization: the future of online social networking. In:
W3C workshop on the future of social networking position papers

28. Marcon M, Viswanath B, Cha M, Gummadi KP (2011) Shar-
ing social content from home: a measurement-driven feasibility
study. In: Proceedings of the 21st international workshop on Net-
work and operating systems support for digital audio and video,
NOSSDAV ’11, pp 45–50

29. Maymounkov P, Mazires D (2002) Kademlia: a peer-to-peer infor-
mation system based on the xor metric. In: Peer-to-peer systems
(Lecture Notes in Computer Science), vol 2429. Springer Berlin,
Heidelberg, pp 53–65

30. Narendula R, Papaioannou TG, Aberer K (2012) Towards the real-
ization of decentralized online social networks: an empirical study.
In: 2012 32nd International conference on distributed computing
systems workshops (ICDCSW). IEEE, pp 155–162

31. Nilizadeh S, Jahid S, Mittal P, Borisov N, Kapadia A (2012)
Cachet: a decentralized architecture for privacy preserving social
networking with caching. In: The 8th international conference on
emerging networking experiments and technologies

32. Pouwelse JA, Garbacki P, Wang J, Bakker A, Yang J, Iosup A,
Epema DH, Reinders M, Van Steen MR, Sips HJ (2008) Tri-
bler: a social-based peer-to-peer system. Concurr Comput Pract
Experience 20(2):127–138

33. Recordon D, Reed D (2006) Openid 2.0: a platform for user-
centric identity management. In: Proceedings of the second
ACM workshop on digital identity management, DIM ’06,
pp 11–16

34. Rhea S, Godfrey B, Karp B, Kubiatowicz J, Ratnasamy
S, Shenker S, Stoica I, Yu H (2005) OpenDHT: a pub-
lic DHT service and its uses. In: Proceedings of the
2005 conference on applications, technologies, architectures,
and protocols for computer communications, SIGCOMM ’05,
pp 73–84

35. Sandler D, Wallach DS (2009) Birds of a fethr: open, decen-
tralized micropublishing. In: Proceedings of the 8th international
conference on Peer-to-peer systems

36. Seong S-W, Seo J, Nasielski M, Sengupta D, Hangal S, Teh SK,
Chu R, Dodson B, Lam MS (2010) Prpl: a decentralized social
networking infrastructure. In: Proceedings of the 1st ACM work-
shop on mobile cloud computing & services: social networks and
beyond, MCS ’10, pp 8:1–8:8

37. Shahriar N, Chowdhury SR, Sharmin M, Ahmed R, Boutaba R,
Mathieu B (2013) Ensuring β-Availability in P2P Social Net-
works. In: 5th International workshop on peer-to-peer systems and
online social networks (HotPOST 2013)

38. Shakimov A, Lim H, Cáceres R, Cox LP, Li KA, Liu D,
Varshavsky A (2011) Vis-à-vis: privacy-preserving online social
networking via virtual individual servers. In: Proceedings of
COMSNETS, pp 1–10

39. Shakimov A, Varshavsky A, Cox LP, Cáceres R (2009) Privacy,
cost, and availability tradeoffs in decentralized osns. In: Proceed-
ings of the 2nd ACM workshop on online social networks, WOSN
’09. ACM, New York, pp 13–18

40. Sharma R, Datta A (2012) Supernova: super-peers based architec-
ture for decentralized online social networks. In: Proceedings of
COMSNETS, pp 1–10

41. Xu T, Chen Y, Zhao J, Fu X (2010) Cuckoo: towards decen-
tralized, socio-aware online microblogging services and data
measurements. In: Proceedings of the 2nd ACM international
workshop on hot topics in planet-scale measurement, HotPlanet
’10, pp 4:1–4:6

42. Young AL, Quan-Haase A (2009) Information revelation and
internet privacy concerns on social network sites: a case
study of facebook. In: Proceedings of the fourth interna-
tional conference on Communities and technologies, pp 265–
274

Shihabur Rahman Chowdhury
is currently a PhD student
at the David R. Cheriton
School of Computer Science,
University of Waterloo. He
received B.Sc. degree in
Computer Science and Engi-
neering from Bangladesh
University of Engineering and
Technology (BUET). His
research interests are in future
Internet architecture, peer-to-
peer systems, and software
defined networking.

Peer-to-Peer Netw. Appl.

Arup Raton Roy received
the B.Sc. degree in Com-
puter Science and Engineer-
ing from Bangladesh Univer-
sity of Engineering and Tech-
nology, Dhaka, Bangladesh, in
2009. He is currently pursuing
his M.Math. degree in Com-
puter Science at University of
Waterloo, under the supervi-
sion of Prof. Raouf Boutaba.
His research interests include
data center, cloud computing,
complex network, and wire-
less communication.

Maheen Shaikh received her
B.E degree in Software Engi-
neering from Mehran Univer-
sity of Engineering And Tech-
nology (MUET) Pakistan. She
is a recent graduate of Mas-
ter of Health Informatics from
David R. Cheriton School of
Computer Science, University
of Waterloo. Her Research
Interest includes Cloud Com-
puting in Health Care IT, Elec-
tronic Health Records, Clini-
cal Decision Support and dis-
tributed databases. She is a
recipient of various scholar-

ships and awards during her undergrad studies at MUET.

Khuzaima Daudjee is a fac-
ulty member in the David R.
Cheriton School of Computer
Science at the University of
Waterloo. His research inter-
ests are in distributed systems,
and data management.

	A taxonomy of decentralized online social networks
	Abstract
	Introduction
	DOSN: the current picture
	P2P social networking (PeerSon)
	SafeBook
	PrPl
	SuperNova
	Vis-á-Vis
	Cachet
	Peer-to-peer microblogging
	FETHR
	Cuckoo

	Comparison criteria
	Architecture
	Types of service
	Social application development API
	Availability architecture
	Scalability
	Privacy control
	Security model
	Business model

	Comparative classification
	Structured vs. semi-structured vs. unstructured architecture
	Service types
	Social application development API
	Availability architecture
	Scalability
	Privacy control: per user to public
	Security
	Business model

	Conclusion
	Acknowledgments
	References

