
Availability in P2P based Online Social Networks

Nashid Shahriar∗, Shihabur Rahman Chowdhury∗, Reaz Ahmed∗,
Mahfuza Sharmin†, Raouf Boutaba∗ and Bertrand Mathieu‡

∗David R. Cheriton School of Computer Science, University of Waterloo

{nshahria | sr2chowdhury | r5ahmed | rboutaba}@uwaterloo.ca
† Dept. of Computer Science, University of Maryland, College Park

{msharmin@umiacs.umd.edu
‡Orange Labs, Lannion, France

bertrand2.mathieu@orange.com

Abstract—Despite their tremendous success, centrally con-
trolled cloud based solutions for social media networking have
inherent issues related to privacy and user control. Alternatively,
a decentralized approach can be used, but ensuring content
availability will be the major challenge. In this work, we propose
a time-based user grouping and replication protocol that ensures
content availability for decentralized sharing of online social me-
dia. The protocol exploits cyclic diurnal patterns in user uptime
behaviors to ensure content persistence with minimal replication
overhead. We also introduce the concept of β-availability that
represents the probability that at least β members of a replication
group will be online at any given time. We present a mathematical
model for measuring β-availability as a function of peer-uptime
duration and replication group size. Simulation results show that
our protocol achieves high content persistence without incurring
significant network and storage overheads.

I. INTRODUCTION

Online Social Networks (OSNs) attract majority of the

Internet users [1], [2]. According to Nielsen’s Social Media
Report 2011 (http://cn.nielsen.com), around 80% of the active

Internet users visit one of the OSN sites. Popular OSNs (like

Facebook and Google+) provide free online storage for users

to upload and share their social content. Facebook is the largest

online social network with one billion active users. Facebook

maintains more than 100 petabytes of online storage and stores

more than 100 billion images.

Despite their tremendous success and apparently free ser-

vices, OSNs are imbalancing the Internet’s ecosystem in many

ways. First, an OSN provider stores its users’ social contents

in a cloud based storage under the control of a central

authority. This poses serious threats to user privacy and content

ownership. For example, many OSN sites use its users’ data

to feed the advertisement industry. Second, users have to obey

the restrictions imposed by the OSN sites (e.g., resolution and

format of uploaded content, storage limits etc.). Third, users

cannot use their uploaded content across multiple OSN sites.

Finally, OSN providers rely on third party content distribution

networks (CDNs) for load distribution and low latency access

across the globe. This aggravates the privacy concerns, since

users’ contents are now being cached at third party locations.

These drawbacks of the current OSN sites have motivated

the research community to investigate the possibility of a peer-

to-peer (P2P) architecture for a decentralized OSN [3], [4],

[5], [6], [7]. However, as addressed by these research efforts,

a decentralized OSN solution inherits a very challenging

problem from P2P storage systems: how to ensure 24×7
content availability with minimal replication overhead. Most

of the proposals in P2P networks continuously maintain a fixed

number of replica to ensure a content’s availability. A few P2P

approaches ([8], [9], [10]) use time-based replication strategy,

where a peer’s daily uptime behavior is utilized to place and

reuse content replicas across its online sessions.

In this work, we propose S-DATA (Structured approach for

Diurnal Availability by Temporal Assemblage), a time based

user grouping and content replication protocol that exploits the

cyclic diurnal pattern in user uptime behavior as observed in

[11], [12], [13]. We store and replicate content within small

user groups and assign the task of indexing group information

and content meta information at more stable computing nodes.

Users with complementary online patterns collaborate in small

groups for replicating each others’ contents across their online

sessions. In order to ensure high availability and low latency

access a geographically distributed setting, we introduce the

concept of β-availability, i.e., the probability that at least

β members of a group will be online at any given time.

This group formation problem is challenging due to three

constraints. First, group size should be as small as possible.

Second, β-availability should be maximized. Third, the group

formation process should be globally optimized and should

not incur significant network overhead.

In contrast to the existing time-based P2P replication

approaches, S-DATA has two advantages. First, it uses a

structured Distributed Hash Table (DHT) protocol, namely

Plexus protocol [14], to construct globally optimized availabil-

ity groups. S-DATA leverages the Hamming distance-based

approximate matching and and index-replication offered by

Plexus protocol to form groups and improve reliability, re-

spectively. These techniques ensure higher system availability

without generating high network or storage overhead for the

group formation process. Second, S-DATA strive to ensure β-978-1-5386-3288-8/17/$31.00 c© 2017 IEEE

availability, as opposed to 1-availability provided by the other

approaches in the literature [8], [9], [15], [16], [10].

This paper extends our initial work [17] in several aspects.

First, we derive a mathematical model for measuring β-

availability as a function of peer-uptime duration and repli-

cation group size in Section V. Second, we extend Section VI

to analyze system availability, convergence time, and com-

munication overhead by varying expected uptime of peers.

Finally, we update related work section to include an in-depth

discussion on the subtle differences between our work and the

state-of-the-art literature.

We organize the rest of this paper as follows. We start

with a comparative study of S-DATA against the related

works on distributed social networks and P2P availability in

Section II. Then, we provide a conceptual overview of S-DATA

in Section III followed by the protocol details in Section IV.

We also present a mathematical model for measuring β-

availability as a function of expected user uptime and group

size in Section V. In Section VI, we provide a simulation

study of the availability architecture to show its performance

and to validate the mathematical model. Finally we conclude

with some future directions of our work in Section VII.

II. RELATED WORKS

Decentralized Online Social Networks

A number of recent research efforts strive to decentralize

storage and control in OSNs [18]. These efforts have been

motivated by the limitations posed by the centralized architec-

ture of the current OSNs [19]. Recently, several decentralized

OSN architectures have been proposed [1], [2]. However,

ensuring that the shared content is highly available is one of

the main challenges that need to be addressed before these

systems can be deployed. Authors in [20] show that in a P2P

network the problem of finding a minimal set of peers to form

replication groups achieving maximum availability is an NP-

hard problem. Consequently, heuristic based approaches are

required to ensure content availability in these systems.

PeerSon [4], SafeBook [5], PrPl [6], Lilliput [3], Ca-

chet [21], Decent [22] are the prominent proposals of de-

centralized OSNs. These works mostly focus on the sys-

tem design, communication protocols, consistency, encryption

schemes, and dissemination of profiles in decentralized OSNs.

However, they have not particularly focused on the replication

schemes fundamental for increasing content availability. Cer-

tainly S-DATA can aid in addressing the availability require-

ment in these works. SuperNova [7] proposed a super peer

based decentralized OSN which focuses on ensuring content

availability. In this architecture a user can select a number of

other users it trusts (storekeepers) to replicate a part of its

contents and serve it in its absence. In contrast to S-DATA,

this replication scheme does not take into account the uptime

distribution of the other users when choosing them as replicas.

Time Based Replication in P2P Network

Several approaches to improve availability in P2P systems

can be found in the literature. However, only a few of these

approaches focus on increasing content availability using a

time-based replication strategy. Blond et al. [9] proposed two

availability-aware applications that take into account peers’

previous availability history collected through an epidemic

protocol. Using a simple predictor, they propose to find the

best matching peer to meet the specific goals of the appli-

cation. A group based Chord model is proposed in [15] to

minimize the impact of frequent peer arrivals and departures.

The redundancy group based approach proposed in [16] tries

to improve availability by utilizing the cyclic behavior of ge-

ographically distributed peers. They proposed a hill-climbing

strategy to determine redundancy groups for data objects and

a counter-based availability score update mechanism. The

latter periodically scans the network to find online peers and

increases their score while reducing the offline peers’ score.

However, the counter mechanism cannot consistently capture

phase relationships within a peer and between peers.

In a previous work, we proposed a peer grouping protocol

that constructs replication groups of peers through a gossip

based routing technique [8]. This approach may need a long

convergence time to find a suitable group. Rzadca et al.[10]

represented peer availability as a function of discrete time to

minimize the number of replicas. In their model, availability

is represented by a set of time slots in which a peer is

available with certainty, i.e., using discrete on-off availability.

In contrast, we represent availability by historical probabilities

at discrete time slots. Our probabilistic model captures diurnal

availability patterns more accurately, since peer connectivity

cannot be predicted with absolute certainty in a real world

network. Moreover, the group formation approach proposed

in [10] uses a single-valued scoring function, which only

considers the number of newly covered slots while making

group formation decision. On the contrary, our utility function

considers relative improvement from both users and the size

of the resulting group. Finally, their model only targets to

ensure 1-availability across time slots, whereas we formulate

the concept of β-Availability to provide better reliability.

III. BACKGROUND

A. Architecture

As depicted in Fig. 1, S-DATA architecture revolves around

three conceptual components: replication group, Group Index
Overlay (GIO) and Content Index Overlay (CIO). Replication

groups provide a persistent storage by exploiting users’ diurnal

uptime-behavior, GIO maintains availability information for

individual users and user groups, while CIO retains an indirect

mapping from content name to content location. We do not

discuss the details of these components since they can be found

in our initial work [17].

B. Availability Vector

The traditional definition of availability is simply measured

by the fraction of time a user is online [23] within a certain

time period. If a user joins and leaves m times during a period

of T hours, and every time remains up for tk hours, then its

availability can be computed as,
∑m

k=1 tk
T . This formula does

Group Index
(Plexus)

Offline peer

Online peer

Super peer

Replication

group

Content Index
(any DHT)

Index

persistent content

1. lookup(content-name)
→ groupID

2. lookup(groupID)
→ peer IP:port

3. Content access

In
de

x

Fig. 1. Conceptual Architecture of S-DATA

not take into account the diurnal availability pattern in user

uptime behavior. This fact has been mathematically proven by

Yang et al. in [24].

In this work, we divide 24-hours of a day in K equal-length

time-slots w.r.t. GMT+0, and estimate the probability of a user

being online in each time-slot based on its historical behavior.

Thus the availability of a user, say x, is defined as Ax =
{ax1, ax2, ..., axk, ..., axK}, where Ax is the K-dimensional

availability vector for user x, and axk is the probability of

user x being online in slot k.

The responsibility of computing and maintaining the avail-

ability vectors can be handled by the P2P client software

or GIO. Each of these alternatives has its own merits and

demerits, and can be left as an implementation specific choice.

Computing and maintaining availability vectors at the client

software will give more accurate estimates and will gener-

ate minimal network traffic. However, a client software can

be maliciously modified to report a fake availability vector.

Alternatively, the availability vectors can be computed and

maintained by the GIO. This approach can generate more

reliable availability vectors, though at the expense of increased

network traffic and decreased accuracy.

C. Terminology

In S-DATA we use four indexes (see Table I) for group

formation and content lookup. Ie represents an indexing node

in CIO which is responsible for storing the ID of e (IDe),

where e can be a user or a group. Ie works as e’s proxy

for meta-information exchange. For user, say x, Ix stores an

Mx record, which contains the availability vector (Ax), ID

(IDx) and network location (Locx) for x, as well as the

group ID (IDGx
) and index location (IGx

) for x’s group

Gx. For a group G, IG contains index record NG, which

contains group availability vector (AG), group ID (IDG), and

for each member x of G, its ID (IDx), index location (Ix)

and network location (Locx). To enable approximate matching

between users’ and groups’ availability vectors, we maintain

Ve indexes that contain availability pattern (Se, explained in

Section IV-A1), availability vector (Ae), ID (IDe) and index

location (Ie) for e. Ve is stored in all nodes Le within a

pre-specified Hamming distance from Se. Finally, for content

lookup another set of indexes (Kw) is maintained in CIO. For

each keyword w attached to a content, an index (Kw) is stored

in CIO at node Jw, which is responsible for keyword w. Kw

retains the content’s ID (IDdoc), other keywords describing

the content ({wi}), group ID (IDG) and index location (IG)

of the group that hosts the content.

TABLE I
LIST OF INDEXES IN S-DATA

Name Overlay Indexed information

Mx GIO/Ix < Ax, IDx, Locx, IDGx , IGx >

NG GIO/IG < AG, IDG, {< IDx, Ix, Locx > |x ∈ G} >

Ve GIO/LSe < Se,Ae, IDe, Ie >

Kw CIO/Jw < IDG, IG, IDdoc, {wi|wi ∈ doc} > LŚx

IV. S-DATA PROTOCOL

We use four processes to describe the proposed S-DATA

protocol. In Section IV-A, we present the mechanism for a

peer to advertise its (or its group’s) availability pattern to the

GIO. The group formation process is discussed in detail in

Section IV-B. The process of refreshing group indexes in GIO

with the most up to date online status of the group members

is presented in Section IV-C. Finally, the content lookup and

content index update process is presented in Section IV-D.

A. Indexing Availability Information

To cluster users in globally optimized replication groups,

we need to index each user’s availability information (Ve) to

GIO. This indexing process involves two steps: i) encoding

availability vector (Ae) to bit-vector (Se) and ii) advertisement

using Plexus protocol. These two steps are explained next.

1) Availability Vector Encoding: It can be easily seen that

the availability vector Ai is a K-dimensional vector of uptime

probabilities, whereas the advertisement (or query) patterns

in a Plexus network built on an < n, k, d > code are n-bit

values. Hence, we need a means to encode a K-dimensional

availability vector into an n-bit pattern.

In this work we have used K = 24 slots for availability

vector. While for Plexus implementation, we have used the

< 24, 12, 8 > Extended Golay Code G24. Trivially, we can

directly encode each probability value aik in Ai to one-bit

in the 24-bit advertisement (or query) pattern. We can use a

threshold, say θ, and can set the k-th bit of the 24-bit encoded

pattern to 1 if aik > θ. Unfortunately, this encoding will incur

significant information loss and will degrade approximate

matching performance in Plexus network.

Instead, we use a better encoding scheme based on the ob-

servation that consecutive values in the availability vector are

usually similar in magnitude. To exploit this observation, we

average the probability values in two adjacent slots and obtain

a 12-dimensional availability vector Ái = {ái1, ái2, . . . ái12},

where áij is computed as áij =
(ai(2j−1)+ai(2j))

2 . Now, we

encode each áij into two bits in the 24-bit advertisement

pattern as follows. áij is encoded to 00 if áij is less than 1
3 .

If áij is between 1
3 and 2

3 then the encoding is 01. Otherwise,

áij is greater than 2
3 and is encoded to 11. This encoding

reflects the numeric distance in áij to the Hamming distance

in advertisement patterns.

2) Advertisement: An advertising user, say x,

first computes the n-bit advertisement pattern, say

Sx, as explained above. Then x sends the tuple

< Sx,Ax, IDx, Locx, IDGx
, IGx

>, to Ix. If x has

not formed a group then IDGx
and IGx will be empty.

Upon receiving the advertisement message Ix computes the

codewords within a pre-specified Hamming distance from Sx

and uses Plexus routing to route and index the advertisement

(Vx) to the nodes (LSx
) responsible for these codewords.

B. Group Formation

Find
Find

{ }

Best
match m

Invite with

1) Invitation

update

Best
invitee x

Invitations

Advert.

update

update

update

updates from m

Plexus unicast Plexus multicast Direct link

with

{ }

3) Participation

2) Group formation

Best invitee so far

If
 n

ot
 th

e
be

st
 in

vi
te

e

Fig. 2. Sequence diagram shows group formation of x with m

This process lies at the core of S-DATA protocol. Our target

is to cluster users into groups in such a way that the group

sizes are minimal and at any given time at least β ≥ 1 users

from a group are online with the highest possible probability.

The most challenging part of this process is to relay group

formation messages between users that may not be simultane-

ously online. To this end, we use GIO as a message relay.

Fig. 2 presents a sequence of message exchanges between

indexing nodes in GIO and users x and m while forming a

1-availability group G. It is worth noting that x and m are not

online simultaneously and hence they have no direct message

exchange. The Group formation process is composed of the

following three steps:

1) Invitation : We assume that on average a user will be

online for L time-slots on a daily basis. It will be the

responsibility of a user to maintain β users in its group

during the L-slots it is online and the next L-slots. To

find a suitable user that can improve group’s availability

for the next L-slots, user x computes an availability

pattern Śx. Śx has bits t + L + 1 to t + 2L set to

1, assuming that the availability pattern Sx of user x
has bits t to t + L set to 1. Once Śx is computed,

user x forwards it to Ix. Ix uses Plexus multi-cast

routing to find the users (LŚx
) in GIO responsible for

indexing user/group availability records (Ve) similar to

Śx. From the availability records (Ve) returned by Ix,

user x selects the most appropriate user, say m, that has

minimum Hamming distance from Śx and maximizes its

group availability. A mathematical model for selecting

the most suitable user will be presented in Section V-C.

User x locates the indexing node (Im) for m using

Plexus routing and sends an invitation request to Im
that includes the Vx record.

2) Group formation : Upon becoming online m updates Im
with its new network location (Locm). In response Im
sends all the invitations ({Ve}) for m that have been

accumulated during m’s offline period. Among these

invitations, m selects the best candidate x. If x is already

a member of an existing group then m simply joins the

group otherwise it creates a new group G. To create

or update the group index in GIO, m may require to

transmit three messages: a) if m created a new group,

it has to update the Mx record in Ix so that x can

learn about G upon returning; b) m has to index (VG)

to all nodes (LG) within a certain Hamming distance

from SG; c) m has to store the group index NG to IG.

3) Participation : During its next online session user x will

update Ix with its new network location Locx. If the

previous invitation from x was honored by m then Ix
responds with the newly formed group’s information (

IDG and IG). x updates IG with its location informa-

tion Locx and IG responds with any update from m or

other members of G. On the other hand, if the invitation

from x was not accepted by m, then x has to restart the

group formation process with the next best matching

user, other than m.

The above described process of forming 1-availability group

can be easily extended to construct β-availability groups. Two

modifications in Step 1 of the above process are required. First,

x should be the highest ID user among the online members

of its group (Gx). Second, x should send invitations to β − f
users simultaneously, where f is the number of users in x’s

group who will be online in the L-time slots following the

online period of x.

C. Group Maintenance

The diurnal availability pattern of a user may change over

time. In such a situation a user, say x, may want to change

its group. Group changing involves leaving the current group

and joining a new group. The process of joining a group has

been described in Section IV-B. To leave its current group Gx,

user x has to update two nodes in GIO. First, x has to remove

its index information from NGx
record, which is stored at

node IGx . Second, x has to clear the IDGx and IGx fields in

Mx record, which is stored in Ix. It should be noted that we

use soft-state registration for advertising Vx records to LSx
.

Hence, the Vx records will be automatically removed from the

nodes in LSx , if x does not re-advertise before the previous

advertisement expires.

D. Content Indexing and Lookup

1) Content Indexing: Traditionally a content in a P2P net-

work is tagged with a set of descriptive keywords, (w ∈ {wi}).

These keywords are used to locate the node (Jw) in CIO for

storing the Kw record. While advertising a content a user, say

x, may or may not be a member of a replication group. If x
is a member of a replication group, say Gx then IDGx and

IGx
are stored in Kw record, otherwise IDx and Ix are used.

However, Kw is not updated when x forms a group. Rather,

Kw is updated in a reactive manner during content lookup.

This process is described in the following.

2) Content Lookup: A query for keyword w will be routed

to Jw using the routing protocol in CIO. Based on the

information found in Kw, the query will be forwarded to either

IGx if the content host x has formed a group and Kw has been

updated, or the query will be forwarded to Ix. In a regular

scenario, the query will be forwarded to IGx
and the location

Locy of the currently alive user y in Gx will be returned to the

querying user via Jw. In contrast, if x has formed a group but

Kw has not been updated, then Jw will contact Ix, which will

respond with IDGx and IGx . Accordingly, Jw will update Kw

for future references. Finally, Jw will contact IGx
to obtain

the location (Locy) of the currently active user (y) in Gx.

V. MATHEMATICAL MODEL

In this section we first present a mathematical model for

calculating β-availability. Then we present a model for ex-

pressing β-availability as a function of the average uptime and

group size. Finally, we present a utility function for computing

the relative gain in β-availability that can be achieved by

combining two peers (or groups) in a group.

A. Defining β-Availability

As presented in Section III-B, we express the availability of

peers x as K dimensional vector Ax = {ax1, ax2, . . . axK},

where axk represents the probability of peer x being online

in time-slot k. When peers collaborate in a replication group,

say G, we can model the 1-availability vector of the group as

A1
G = {a1G1, a

1
G2, . . . , a

1
GK}. The combined probability of at

least one peer being online at any given slot k can be computed

as follows:

a1Gk = Pr[at least 1 member is online in slot k]

= 1− Pr[no peer is online in slot k]

= 1−
∏
∀x∈G

(1− axk) (1)

We can extend the equation for a1Gk to compute 2-

availability, i.e., the probability of at least 2 peers being online,

at slot k as follows:

a2Gk = Pr[at least 1 member is online at slot k]

− Pr[exactly 1 member is online at slot k]

= a1Gk − aexactly 1
Gk

Here aexactly 1
Gk is the probability of exactly one member of

G being online at slot k. This can be computed as:

aexactly 1
Gk =

∑
∀x∈G

axk
∏

∀y∈G,y �=x

(1− ayk) (2)

In a similar manner, we can generalize the 2-availability

equation to compute β-availability at any slot k as follows:

aβGk = a
(β−1)
Gk − a

exactly (β−1)
Gk

= a1Gk −
β−1∑
j=1

a
exactly (j)
Gk (3)

Now we can average the slot-wise availability values to

obtain an estimated β-availability of the group over time:

|Aβ
G| =

1

K

K∑
k=1

aβGk (4)

B. Estimating β-availability

Here we develop a mathematical model to establish the

relationship between β-availability, group size and uptime

distribution. Without loss of generality we assume that each

peer is online for L consecutive slots of a day with high

probability, while its probability of being online for the rest of

the slots is very low. Following the finding of Bustamante et

al. in [25], we model the duration of a peer’s online session,

i.e., L, using the Pareto distribution with shape parameter α.

According to this distribution the expected uptime can be

computed as L =
α

1− α
.

Besides modeling uptime distribution, we have to model

the positive and negative correlation between the probabilities

of a peer being online between consecutive time slots. For

this we have used the short tailed Cauchy distribution that

can represent the correlation between consecutive probability

values. Accordingly, we partition the availability vector into

high and low regions based on uptime L. For peer x, axk in

any slot k in the high availability region can be computed as:

axh[i] = s ∗ γ

π[(i ∗ δh)2 + γ2]
(5)

where, δh = h
L and i = 0 to L− 1.

Similarly, we can compute axk in any slot k in the low

availability region as follows:

axl[i] = s ∗ γ

π[(i ∗ δl + p)2 + γ2]
(6)

where δl =
l

K−L and i = 1 to K − L. Here, h, l, s and p
are constants, which can be manipulated to model different

uptime behaviors.

TABLE II
1-AVAILABILITY AT DIFFERENT SLOTS FOR PEERS OF SAME GROUP

Peak at slot 1 slot L slot 2L slot 3L slot kL

1st L slots f(−L
2 .δh) f(L

2 .δh)

2nd L slots f(−L
2 .δh − Lδl) f(−L

2 .δh) f(L
2 .δh)

3rd L slots f(−L
2 .δh − 2Lδl) f(−L

2 .δh − Lδl) f(−L
2 .δh) f(L

2 .δh)
· · · · · · · · · · · · · · · · · ·
ith L slots f(−L

2 .δh − (i− 1)Lδl) · · · · · · · · · f(−L
2 .δh − kLδl)

Suppose group G is composed of peers, x, y . . . z. We

pick a peer, say x, having peak slot in the middle of the

first L slots. Then we compute its availability vector, Ax =
{ax1, ax2 . . . axK} using Equation (5) and Equation (6). We

get K equations similar to Equation (5) and Equation (6)

corresponding to each of the K slots. We pick another peer

y, whose peak slot is at the middle of the second L slots

and get another K equations corresponding to the vector,

Ay = {ay1, ay2 . . . ayK} in a similar way. In this way, we

pick a peer z having the peak slot at the middle of the K
L th

L slots and obtain Az = {az1, az2 . . . azK}. Using these

availability vectors we can find β-availability at each slot. It

should be noted that the β-availability of a group depends on

L, while L depends on α. According to the recurrence relation

in Equation (3), finding β-availability requires computation of

1-availability, 2-availability and so on. Therefore, as the first

step of β-availability computation, we present a method to

calculate 1-availability = 1 − (1 − axi)(1 − ayi) . . . (1 − azi)
at any slot i in the following.

We can generalize Equation (5) and Equation (6) as

f(w) = s ∗ γ

π[(w)2 + γ2]

where, w represents either a high or a low availability slot. As

depicted in Table II, for an ideal scenario, a group will have
K
L peers and the peak of the 1st peer will align with the 1st L
slots, peak of the 2nd peer will align with the 2nd L slots and

so on. Table III, on the other hand, presents 1-availability of

peers from the same group at kth slot. From these two tables

we can find a1Gk for k < L as follows:

a1Gk =1− (1− f(−L

2
.δh + kδh))

∗
K
L∏

i=2

(1− f(−L

2
.δh − ((i− 1)L− k)δl)) (7)

To obtain aGk for all k = 1 to K, a more generalized

formulation is required. Moreover, the best case scenario,

as presented in Tables II and III, will not be found in a

real situation. Considering these two factors we average slot

availability values for high and low regions separately. We

use ah and al to denote the average availability at high and

low regions, respectively. Within a group these two average

values will the be same for all peers. Hence we have not added

the peer name in ah or al. Evidently, we can obtain ah and

al by integrating the slot-wise availability values presented

in Equation (5) and Equation (6), respectively as follows:

ah =
2

L

∫ L/2

0

ah[i]di =
2s

hπ
arctan

h

2γ
(8)

al =
2

K − L

∫ K−L
2

0

al[i]di =
2s

lπ

(
arctan

l + 2p

2γ
−arctan

p

γ

)
(9)

Now, using ah and al in Equation Equation (1), we get a

simplified form of 1-availability: a1Gk = 1 − (1 − ah)(1 −
al)
|G|−1. Here |G| is the number of members in group G.

Now combining Equations (2), (5), (6), (8), and (9) we can

compute aexactly 1
Gk as,

aexactly 1
Gk = ah(1− al)

|G|−1

+ (|G| − 1)al(1− ah)(1− al)
|G|−2 (10)

We can extend Equation 10 to get aexactly 2
Gk as

aexactly 2
Gk =

∑
∀Px,Py∈G,x �=y

axkayk
∏

∀Pz∈G,x �=y �=z

(1− azk)

=
1∑

m=0

a1−m
h aml (1− ah)

m(1− al)
|G|−2−m

+ (|G| − 2)a2l (1− ah)
2(1− al)

|G|−4

In a similar manner, the probability of exactly j members

of G to be available at kth slot can be computed as:

aexactly j
gk =

j−1∑
m=0

aj−m
h aml (1− ah)

m(1− al)
|G|−j−m

+ (|G| − j)ajl (1− ah)
j(1− al)

|G|−2j

(11)

Now, combining Equation (3) and (11), we can obtain the

simplified form of β-availability as follows:

aβgk = 1− (1− ah)(1− al)
|G|−1

−
β−1∑
j=1

j−1∑
m=0

aj−m
h aml (1− ah)

m(1− al)
|G|−j−m

−
β−1∑
j=1

(|G| − j)ajl (1− ah)
j(1− al)

|G|−2j (12)

6 8 10 12 14 16 18 20 22 24
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Group size

β
−a

va
ila

bil
ity

, a
β gk

β=1
β=2
β=3
β=4
β=5

Fig. 3. Estimation of β-availability

Equation (12) establishes a relationship between β-

availability, uptime and group size. To solve it analytically,

we first estimate the average availabilities, i.e., ah and al,
using the constant values: γ = 1, s = 2, h = 1, α = 1.5,

p = 0.5 and l = 4. These values give the best fit for the

real-trace data that can be found in [26] and [27]. Putting the

values of ah and al in Equation 12, we can estimate slot-

wise availability for different values of β and group-sizes.

The resulting β-availability curves are shown in Fig. 3, which

confirms that larger groups are required to attain a given level

of β-availability for higher values of β.

TABLE III
1-AVAILABILITY AT kTH SLOT FOR PEERS OF SAME GROUP

Peer at kth slot

1st L slots f(−L
2 .δh + kδh)

2nd L slots f(−L
2 .δh − (L− k)δl)

3rd L slots f(−L
2 .δh − (2L− k)δl)

· · · · · ·
ith L slots f(−L

2 .δh − ((i− 1)L− k)δl)

C. Peer Selection Metric

During the group formation process, as presented in Sec-

tion IV-B, a peer needs to select the most appropriate candidate

for group formation from a set of peers or groups with the

desired availability pattern. We define Cx,y to be the combined

gain that can be achieved by placing peer (or group) x and peer

(or group) y in a new group, say G. Cx,y can be obtained by

adding the individual gains Ux,G and Uy,G for the participants

x and y, respectively. Equations for computing combined gain

Cx,y and individual gain Um,G are given below.

Cx,y =
(UxG + UyG)

|Gx ∪Gy| (13)

where,

Um,G =

K∑
k=1

(aβGk − aβmk)

To reduce replication overhead, we want groups to be as

small as possible. We incorporate this constraint in Cx,y com-

putation, by placing the new group size, i.e., |G| = |Gx∪Gy|,
as dominator in Equation (13).

VI. PERFORMANCE EVALUATION

We used the Peersim [28] simulator for implementing S-
DATA protocol on a Plexus network deployed using the

Extended Golay Code G24 as described in Section III-A.

Our simulation is focused on the following aspects: first, we

measure the efficiency of our grouping protocol and compare

it with other grouping approaches, i.e., random, unstructured,

and centralized grouping approaches (Section VI-A). Second,

we show the availabilities achieved by S-DATA along with the

associated network and storage overheads (Section VI-B). We

use Pareto distribution for generating the availability vectors

based on the observations in [25], [29]. We design the simula-

tions around GIO and replication groups, and deliberately omit

to simulate CIO, since it is out of the scope of this work. We

use the following performance metrics to evaluate S-DATA:

• Group availability is measured in units of nine [30] and

defined as −log10(1 − T) , where T is the fraction of

the total observed time when groups are available. For

instance, a group availability of 2 nines implies that the

group is accessible during 99% of the total time.

• System availability is computed as the average of the

availability (|Aβ
G|) across all groups.

• Convergence time is measured by the number of slots

required for 99% of the peers to join some group.

• Normalized message overhead is measured as the ratio

of total number of messages exchanged and the number

of successful replies sent by users in the system required

to form a group.

A. Grouping Efficiency

We perform the simulations in this section for an expected

uptime distribution L = 6, and vary the network size from

6000 to 16000 in steps of 2000. We compare S-DATA with

the following approaches:

• Unstructured: We use the gossip protocol as proposed in

[8] in this strategy, where users reply based on their local

knowledge for group formation.

• Random: In this strategy, a user randomly invites a

peer within two hop neighbourhood without using any

selection metric. The invited user then decides to accept

or deny the invitation according to a random toss.

• Central: In this scheme, a central entity (Oracle), which

can be a single cloud service provider, stores the avail-

ability vectors for all users in the system. Alive users

communicate with the Oracle to select and invite the best

matching user according to Equation (13). The Oracle

chooses the best invitee, from the invitations for each

user and forms a group.

Fig. 4(a) depicts the cumulative frequency of the percentage of

groups as a function of group availability. For the non-random

grouping strategies, all the groups remain available for more

than 70% (0.5 nines) of the time, whereas all of the groups

formed by random grouping strategy remain available for only

55% (0.35 nines) of the time. From Fig. 4(a), we can also see

that our structured grouping approach outperforms all other

approaches.

Expected values of system availability after convergence are

presented in Fig. 4(b). Besides the average values of system

availability, we also present the minimum and maximum group

availabilities as error bars. The structured approach exhibits su-

perior system availability than that of random and unstructured

approaches. Shorter error bars on S-DATA also indicate that the

maximum and minimum group sizes are close to the average

group size. The random approach has the worst result of the

four with larger deviation in the error bar and lowest system

availability. The performance of the unstructured method lies

in between central and random strategies.

Fig. 4(c) presents system convergence time as a function of

network size. The central strategy has the lowest convergence

time because the task of index storage and group formation

are done in one location in the network. The convergence time

is not affected by network size for random and unstructured

approaches, whereas for central and S-DATA, convergence time

0 0.5 1 1.5 2
0

20

40

60

80

100

120

C
um

ul
at

iv
e

fre
qu

en
cy

 (i
n

pe
rc

en
ta

ge
)

Group availability (nines)

Un−structured

Random

Central

Structured

(a) Group Availability (b) System Availability (c) Convergence Time

Fig. 4. Grouping Efficiency

 0.2

 0.4

 0.6

 0.8

 1

 1.2

5K 10K 15K 20K 25K 30K

S
ys

te
m

 A
va

ila
bi

lit
y

Network Size

L = 4hrs

Beta = 1
Beta = 2

Beta = 3
Beta = 4

Beta = 5

(a) L = 4hrs

 0.2

 0.4

 0.6

 0.8

 1

 1.2

5K 10K 15K 20K 25K 30K

S
ys

te
m

 A
va

ila
bi

lit
y

Network Size

L = 6hrs

Beta = 1
Beta = 2

Beta = 3
Beta = 4

Beta = 5

(b) L = 6hrs

 0.2

 0.4

 0.6

 0.8

 1

 1.2

5K 10K 15K 20K 25K 30K

S
ys

te
m

 A
va

ila
bi

lit
y

Network Size

L = 8hrs

Beta = 1
Beta = 2

Beta = 3
Beta = 4

Beta = 5

(c) L = 8hrs

Fig. 5. System availability

 10

 20

 30

 40

 50

 60

 70

 80

 90

 5 10 15 20 25 30

C
on

ve
rg

en
ce

 T
im

e
(h

ou
rs

)

Network Size (x 1000)

Convergence time vs. Network Size (L = 4hrs)

β = 1
β = 2
β = 3
β = 4
β = 5

(a) L = 4hrs

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30

C
on

ve
rg

en
ce

 T
im

e
(h

ou
rs

)

Network Size (x 1000)

Convergence time vs. Network Size (L = 6hrs)

β = 1
β = 2
β = 3
β = 4
β = 5

(b) L = 6hrs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 5 10 15 20 25 30

C
on

ve
rg

en
ce

 T
im

e
(h

ou
rs

)

Network Size (x 1000)

Convergence time vs. Network Size (L = 8hrs)

β = 1
β = 2
β = 3
β = 4
β = 5

(c) L = 8hrs

Fig. 6. Convergence Time (Varying Network Size)

 2

 3

 4

 5

 6

 7

5K 10K 15K 20K 25K 30KN
or

m
al

iz
ed

 M
es

sa
ge

 O
ve

rh
ea

d

Network Size

L = 4hrs

Beta = 1
Beta = 2
Beta = 3

Beta = 4
Beta = 5

(a) L = 4hrs

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

5K 10K 15K 20K 25K 30KN
or

m
al

iz
ed

 M
es

sa
ge

 O
ve

rh
ea

d

Network Size

L = 6hrs

Beta = 1
Beta = 2
Beta = 3

Beta = 4
Beta = 5

(b) L = 6hrs

 2

 2.5

 3

 3.5

 4

 4.5

 5

5K 10K 15K 20K 25K 30KN
or

m
al

iz
ed

 M
es

sa
ge

 O
ve

rh
ea

d

Network Size

L = 8hrs

Beta = 1
Beta = 2
Beta = 3

Beta = 4
Beta = 5

(c) L = 8hrs

Fig. 7. Message Overhead

increases with increased network size. For S-DATA users with

low uptime remain ungrouped until the group formation for

highly available users is complete, hence the longer conver-

gence time.

B. Performance of S-DATA

We perform the simulations in this experiment for three

uptime distributions, L = 4, 6, and 8 hours, respectively. For

each value of L we vary the network size from 5000 to 30000
in steps of 5000, and vary β from 1 to 5.

System Availability: Fig. 5 presents the expected system

availability for different replication levels (β), network size

and uptime distribution (L). System availability increases

with β as we have more redundancy. The diminishing error

bars for higher β implies that more individual groups are

achieving availability very close to the system average. It is

worth mentioning that a significant improvement in system

availability is achieved when β rises from 1 to 2. But for

higher β, the increase is not significant.

Convergence Time: Fig. 6 shows convergence time for

different network sizes. With an increase in network size, the

convergence time also increases almost linearly. For most of

the cases, a higher user uptime results in a faster convergence

in group formation. It is worth noting that the convergence

time is higher for β = 1 than that for other values of β. For

β = 1, users with lower uptime have lesser option to form

groups, and they have to wait for the highly available users

to complete their group formation. This results in the higher

convergence time. It can be observed that β = 2 provides a

fast converging system.

Normalized Message Overhead (NMO): Fig. 7 shows the

messaging overhead for group formation using NMO. It can

be seen that less messaging overhead is incurred when users

have relatively high uptime. As the network size grows, a user

receives more group formation invitation from other users, but

can accept only one. Therefore, it rejects all but one invitation.

The rejected users then need to send more invitations to join

a group. Moreover when users want to ensure β-availability

for higher β, they need to have more users in the group and

even more invitations are sent to other users. This obviously

results in higher NMO.

VII. CONCLUSION

In this paper, we have introduced the β-availability and

described an efficient grouping protocol (S-DATA), which

ensures data availability around the clock in a P2P based

OSN. We have derived a mathematical relationship between

expected β-availability, group size, and uptime distribution of

peers. This can assist in selecting the most suitable users, while

forming a replication group. Simulation results showed that

the proposed S-DATA protocol ensures very high availability

of contents, comparable to a centralized group formation

protocol. The results suggest that β = 2 can be a good

operating point since it achieves high system availability

without incurring significant overhead in terms of messaging

and convergence time. Availability of popular contents can be

further increased by caching the contents at other users not

belonging to the replication group of the contents.

In the future, we intend to deploy S-DATA on a real world

system and further investigate its performance for specific

application availability requirements. The success of S-DATA
also depends on the willingness and truthfulness of the peers.

Tackling the potentially malicious behavior of peers and secu-

rity issues of group formation is another prospective research

issue we plan to investigate.

VIII. ACKNOWLEDGEMENT

This work was supported by Natural Science and Engi-

neering Council of Canada (NSERC) under its Discovery

program.

REFERENCES

[1] S. R. Chowdhury, A. R. Roy, M. Shaikh, and K. Daudjee, “A taxonomy
of decentralized online social networks,” Peer-to-Peer Networking and
Applications, vol. 8, no. 3, pp. 367–383, 2015.

[2] T. Paul, A. Famulari, and T. Strufe, “A survey on decentralized online
social networks,” Computer Networks, vol. 75, pp. 437–452, 2014.

[3] T. Paul, N. Lochschmidt, H. Salah, A. Datta, and T. Strufe, “Lilliput:
A storage service for lightweight peer-to-peer online social networks.”
IEEE (26th International Conference on Computer Communications and
Networks (ICCCN)), 2017.

[4] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, “Peerson: P2P
social networking: early experiences and insights,” in Proceedings of
the Second ACM EuroSys Workshop on Social Network Systems, ser.
SNS ’09, 2009, pp. 46–52.

[5] L. Cutillo, R. Molva, and T. Strufe, “Safebook: A privacy-preserving
online social network leveraging on real-life trust,” Communications
Magazine, IEEE, vol. 47, no. 12, pp. 94 –101, Dec. 2009.

[6] S.-W. Seong, J. Seo, M. Nasielski, D. Sengupta, S. Hangal, S. K.
Teh, R. Chu, B. Dodson, and M. S. Lam, “Prpl: a decentralized social
networking infrastructure,” in Proceedings of the 1st ACM Workshop on
Mobile Cloud Computing & Services: Social Networks and Beyond, ser.
MCS ’10, 2010, pp. 8:1–8:8.

[7] R. Sharma and A. Datta, “Supernova: Super-peers based architecture for
decentralized online social networks,” in Proceedings of COMSNETS,
2012, pp. 1–10.

[8] N. Shahriar, M. Sharmin, R. Ahmed, M. Rahman, R. Boutaba, and
B. Mathieu, “Diurnal availability for peer-to-peer systems,” in Proc.
CCNC, Las Vegas, Nevada, USA, Jan 2012.

[9] S. Blond, F. Fessant, and E. Merrer, “Finding good partners in
availability-aware p2p networks,” in Proc. SSS, 2009.

[10] K. Rzadca, A. Datta, and S. Buchegger, “Replica placement in p2p
storage: Complexity and game theoretic analyses,” in Proc. DCS, June
2010, pp. 599–609.

[11] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in Proc. IMC, 2006, pp. 189–202.

[12] J. Chu, K. Labonte, and B. N. LevineH, “Availability and locality
measurements of peer-to-peer file systems,” in Proc. ITCom, 2002.

[13] S. Saroiu, P. K. Gummadi, and S. Gribble, “A measurement study of
peer-to-peer file sharing systems,” in Proc. MMCN, 2002.

[14] R. Ahmed and R. Boutaba, “Plexus: a scalable peer-to-peer protocol
enabling efficient subset search,” IEEE/ACM Trans. on Networking
(TON), vol. 17, no. 1, pp. 130–143, Feb 2009.

[15] Y. Dan, C. XinMeng, and C. YunLei, “An improved p2p model based
on chord,” in Proc. 6th PDCAT, 2005.

[16] T. Schwarz, Q. Xin, and E. Miller, “Availability in global peer-to-peer
storage systems,” in Proc. IPTPS, 2004.

[17] N. Shahriar, S. R. Chowdhury, M. Sharmin, R. Ahmed, R. Boutaba, and
B. Mathieu, “Ensuring beta-availability in p2p social networks,” in 2013
IEEE 33rd International Conference on Distributed Computing Systems
Workshops, July 2013, pp. 150–155.

[18] M. Qamar, M. Malik, S. Batool, S. Mehmood, A. W. Malik, and
A. Rahman, “Centralized to decentralized social networks: Factors that
matter,” pp. 37–54, 2016.

[19] M. Marcon, B. Viswanath, M. Cha, and K. P. Gummadi, “Sharing
social content from home: a measurement-driven feasibility study,” in
Proceedings of NOSSDAV ’11, 2011, pp. 45–50.

[20] R. Sharma, A. Datta, M. Dell’Amico, and P. Michiardi, “An empirical
study of availability in friend-to-friend storage systems,” in Proceedings
of 2011 IEEE International Conference on Peer-to-Peer Computing,
2011, pp. 348–351.

[21] S. Nilizadeh, S. Jahid, P. Mittal, N. Borisov, and A. Kapadia, “Cachet: a
decentralized architecture for privacy preserving social networking with
caching,” in Proceedings of the 8th CoNEXT. ACM, 2012, pp. 337–348.

[22] S. Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and A. Kapadia, “Decent:
A decentralized architecture for enforcing privacy in online social
networks,” in Pervasive Computing and Communications Workshops,
2012 IEEE International Conference on, pp. 326–332.

[23] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker, “Total recall:
system support for automated availability management,” in Proc. NSDI,
2004.

[24] Z. Yang, J. Tian, and Y. Dai, “Towards a more accurate availability evalu-
ation in peer-to-peer storage systems,” Intl. Journal of High Performance
Computing and Networking, vol. 6, no. 3/4, pp. 233–246, 2010.

[25] F. E. Bustamante and Y. Qiao, “Friendships that last: Peer lifespan and its
role in p2p protocols,” in Proc. Web Content Caching and Distribution,
2004, pp. 233–246.

[26] Repository of availability traces. [Online]. Available:
http://www.cs.uiuc.edu/homes/pbg/availability/

[27] The peer-to-peer trace archive. [Online]. Available:
http://p2pta.ewi.tudelft.nl/pmwiki/?n=Main.Home.

[28] Peersim: A peer-to-peer simulator. [Online]. Available:
http://peersim.sourceforge.net/

[29] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “Measurement study of
peer-to-peer file sharing systems,” MMCN, 2002.

[30] J. R. Douceur and R. P. Wattenhofer, “Large-scale simulation of replica
placement algorithms for a serverless distributed file system,” in Proc.
MASCOTS, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

