PayLess: A Low Cost Network Monitoring
Framework for Software Defined Networks

Shihabur Rahman Chowdhury, Md. Faizul Bari, Reaz Ahmed, and Raouf Boutaba
David R. Cheriton School of Computer Science, University of Waterloo
{sr2chowdhury | mfbari | r5ahmed | rboutaba}@uwaterloo.ca

Abstract—Software Defined Networking promises to simplify
network management tasks by separating the control plane (a
central controller) from the data plane (switches). OpenFlow has
emerged as the de facto standard for communication between
the controller and switches. Apart from providing flow control
and communication interfaces, OpenFlow provides a flow level
statistics collection mechanism from the data plane. It exposes
a high level interface for per flow and aggregate statistics
collection. Network applications can use this high level interface
to monitor network status without being concerned about the
low level details. In order to keep the switch design simple,
this statistics collection mechanism is implemented as a pull-
based service, i.e. network applications and in turn the controller
has to periodically query the switches about flow statistics. The
frequency of polling the switches determines monitoring accuracy
and network overhead. In this paper, we focus on this trade-off
between monitoring accuracy, timeliness and network overhead.
We propose PayLess — a monitoring framework for SDN. PayLess
provides a flexible RESTful API for flow statistics collection
at different aggregation levels. It uses an adaptive statistics
collection algorithm that delivers highly accurate information
in real-time without incurring significant network overhead. We
utilize the Floodlight controller’s API to implement the proposed
monitoring framework. The effectiveness of our solution is
demonstrated through emulations in Mininet.

I. INTRODUCTION

Monitoring is crucial to network management. Management
applications require accurate and timely statistics on network
resources at different aggregation levels. Yet, the network
overhead for statistics collection should be minimal. Accurate
and timely statistics is essential for many network manage-
ment tasks, like load balancing, traffic engineering, enforcing
Service Level Agreement (SLA), accounting and intrusion
detection. Management applications may need to monitor
network resources at different aggregation levels. For example,
an ISP’s billing system would require monthly upstream and
downstream usage data for each user, an SLA enforcement
application may require per queue packet drop rate at ingress
and egress switches to ensure bounds on packet drops, a load
balancing application may require a switch’s per port traffic
per unit time.

A well designed network monitoring framework should
provide the management applications with a wide selection of
network metrics to monitor at different levels of aggregation,
accuracy and timeliness. Ideally, it is the responsibility of the
monitoring framework to select and poll the network resources
unless otherwise specified by the management applications.

The monitoring framework should accumulate, process and
deliver the monitored data at requested aggregation level and
frequency, without introducing too much monitoring overhead
into the system.

Although accurate and timely monitoring is essential for
seamless network management, contemporary solutions for
monitoring IP networks are ad-hoc in nature and hard to imple-
ment. Monitoring methods in IP networks can be classified as
direct and sampling based [1], [6], [19]. Direct measurement
methods incur significant network overhead, while sampling
based methods overcome this problem by sacrificing accuracy.
Moreover, different network equipment vendors have propri-
etary technologies to collect statistics about the traffic [1],
[19], [20]. The lack of openness and interoperability between
these methods and technologies have made the traffic statistics
collection a complex task in traditional IP networks.

More recently, Software Defined Networking (SDN) has
emerged with the promise to facilitate network programmabil-
ity and ease the management tasks. SDN proposes to decouple
control plane from data plane. Data plane functionality of
packet forwarding is built into switching fabric, whereas the
control plane functionality of controlling network devices is
placed in a logically centralized software component called
controller. The control plane provides a programatic interface
for developing management programs, as opposed to providing
a configuration interface for tuning network properties. From
a management point of view, this added programmability
opens the opportunity to reduce the complexity of distributed
configuration and ease the network management tasks [15].

The OpenFlow [17] protocol has been accepted as the de
facto interface between the control and data planes. Open-
Flow provides per flow' statistics collection primitives at the
controller. The controller can poll a switch to collect statics
on the active flows. Alternatively, it can request a switch to
push flow statistics (upon flow timeout) at a specific frequency.
The controller has a global view of the network. Sophisticated
and effective monitoring solutions can be developed using
these capabilities of an OpenFlow Controller. However, in
the current scenario, a network management application for
SDN, would be a part of the control plane, rather than being
independent of it. This is due to the heterogeneity in the
controller technologies, and the absence of a uniform abstract

'A flow is identified by a ordered set of Layer 2-4 header fields

view of the network resources.

In this paper, we propose PayLess, a network monitoring
framework for SDN. PayLess offers a number of advantages
towards developing network management applications on top
of the SDN controller platform. First, PayLess provides an
abstract view of the network and an uniform way to request
statistics about the resources. Second, PayLess itself is de-
veloped as a collection of pluggable components. Interaction
between these components are abstracted by well-defined
interfaces. Hence, one can develop custom components and
plug into the PayLess framework. Highly variable tasks, like
data aggregation level and sampling method, can be easily
customized in PayLess. We also study the resource-accuracy
trade-off issue in network monitoring and propose a variable
frequency adaptive statistics collection scheduling algorithm.

The rest of this paper is organized as follows. We begin with
a discussion of some existing IP network monitoring tools,
OpenFlow inspired monitoring tools, and variable rate adaptive
data collection methods used in sensor and IP networks
(Section II). Then we present the architecture of PayLess
(Section III) followed by a presentation of our proposed flow
statistics collection scheduling algorithm (Section IV). The
next section describes the implementation of a link utilization
monitoring application using the proposed algorithm (Sec-
tion V). We evaluate and compare the performance of our link
utilization monitoring application with that of FlowSense [23]
through simulations using Mininet (Section VI). Finally, we
conclude this paper and point out some future directions of
our work (Section VII).

II. RELATED WORKS

There exists a number of flow based network monitoring
tools for traditional IP networks. NetFlow [1] from Cisco is the
most prevalent one. NetFlow probes are attached to a switch
as special modules. These probes collect either complete or
sampled traffic statistics, and send them to a central collec-
tor [20]. NetFlow version 9 has been adopted to be a common
and universal standard by IP Flow Information Export (IPFIX)
IETF working group, so that non-Cisco devices can send data
to NetFlow collectors. NetFlow provides information such as
source and destination IP address, port number, byte count,
etc. It supports different technologies like multi-cast, IPSec,
and MPLS. Another flow sampling method is sFlow [6], which
was introduced and maintained by InMon as an open standard.
It uses time-based sampling for capturing traffic information.
Another proprietary flow sampling method is JFlow [19],
developed by the Juniper Networks. JFlow is quite similar to
NetFlow. JFlow provides detailed information about each flow
by applying statistical sampling just like NetFlow and sFlow.
Except for sFlow, NetFlow and JFlow are both proprietary
solutions and incur a large up-front licensing and setup cost
to be deployed in a network. sFlow is less expensive to deploy,
but it is not widely adopted by the vendors.

Recently a good number of network monitoring tools based
on OpenFlow have been proposed. OpenTM [21] is one such
approach. It proposes several heuristics to choose an optimal

set of switches to be monitored for each flow. After a switch
has been selected it is continuously polled for collecting
flow level statistics. Instead of continuously polling a switch,
PayLess offers an adaptive scheduling algorithm for polling
that achieves the same level of accuracy as continuous polling
with much less communication overhead. In [13] the authors
have motivated the importance of identifying large traffic
aggregates in a network and proposed a monitoring framework
utilizing secondary controllers to identify and monitor such
aggregates using a small set of rules that changes dynamically
with traffic load. This work differs significantly from PayLess.
Whereas PayLess’s target is to monitor all flows in a network,
this work monitors only large aggregate flows. FlowSense [23]
proposes a passive push based monitoring method where
FlowRemoved messages are used to estimate per flow link
utilization. While communication overhead for FlowSense is
quite low, its estimation is quite far from the actual value and
it works well only when there is a large number of small
duration flows. FlowSense cannot capture traffic bursts if they
do not coincide with another flow’s expiry.

There has been an everlasting trade-off between statistics
collection accuracy and resource usage for monitoring in IP
networks. Monitoring in SDN also needs to make a trade-
off between resource overhead and measurement accuracy
as discussed by the authors in [18]. Variable rate adaptive
sampling techniques have been proposed in different con-
texts to improve the resource consumption while providing
satisfactory levels of accuracy of collected data. Variable
rate sampling techniques to save resource while achieving
a higher accuracy rate have been extensively discussed in
the literature in the context sensor networks [12], [9], [16],
[14], [71, [22]. The main focus of these sampling techniques
has been to effectively collect data using the sensor while
trying to minimize the sensor’s energy consumption, which
is often a scarce resource for the sensors. Adaptive sampling
techniques have also been studied in the context of traditional
IP networks [11], [8]. However, to the best of our knowledge
adaptive sampling for monitoring SDN have not been explored
yet.

III. SYSTEM DESCRIPTION
A. PayLess Architecture

Fig. 1 shows the software stack for a typical SDN setup
along with our monitoring framework. OpenFlow controllers
(e.g., NOX [10], POX [5], Floodlight [2], etc.) provide a
platform to write custom network applications that are obliv-
ious to the complexity and heterogeneity of the underlying
network. An OpenFlow controller provides a programming
interface, usually refereed to as the Northbound API, to
the network applications. Network applications can obtain
an abstract view of the network through this API. It also
provides interfaces for controlling traffic flows and collecting
statistics at different aggregation levels (e.g., flow, packet,
port, etc.). The required statistics collection granularity varies
from application to application. Some applications require per
flow statistics, while for others, aggregate statistics is required.

For example, an ISP’s user billing application would expect
to get usage data for all traffic passing though the user’s
home router. Unfortunately, neither the OpenFlow API nor
the available controller implementations (e.g., NOX, POX
and Floodlight) support these aggregation levels. Moreover,
augmenting a controller’s implementation with monitoring
functionality will greatly increase design complexity. Hence,
a separate layer for abstracting monitoring complexity from
the network applications and the controller implementation is
required.

To this end, we propose PayLess: a low-cost efficient
network statistics collection framework. PayLess is built on
top of an OpenFlow controller’s northbound API and provides
a high-level RESTful API. The monitoring framework takes
care of the translation of high level monitoring requirements
expressed by the applications. It also hides the details of
statistics collection and storage management. The network
monitoring applications, built on top of this framework, will
use the RESTful API provided by PayLess and will remain
shielded from the underlying low-level details.

(App Development Framework

L2/L3/L4
Forwarding

Monitoring

Firewall | eee Apps

<> PayLess API

| Monitoring Framework (PayLess) |

Northbound API

| Control Plane (Floodlight / NOX / POX etc.) |

@Open Flow Protocol

OpenFlow Enabled
Switch Network

Fig. 1.

SDN Software Stack

We elaborate the monitoring framework (PayLess) portion
from Fig. 1 and show its components in Fig. 2. These
component are explained in detail below:

¢ Request Interpreter: This component is responsible for
translating the high level primitives expressed by the
applications to flow level primitives. For example, a
user billing application may request usage of a user
by specifying the user’s identity (e.g., email address or
registration number). This component is responsible for
interacting with other modules to translate this high level
identifier to network level primitives.

o Scheduler: The scheduler component schedules polling
of switches in the network for gathering statistics. Open-
Flow enabled switches can provide per flow statistics, per
queue statistics as well as per port aggregate statistics.
The scheduler determines which type of statistics to
poll, based on the nature of request it received from an
application. The time-stamps of polling is determined by
a scheduling algorithm. In the next section, we describe

a statistics collection scheduling algorithm for our frame-
work. However, the scheduler is well isolated from the
other components in our framework. One can develop
customized scheduling algorithm for statistics collection
and seamlessly integrate withing the PayLess framework.

o Switch Selector: We have to identify and select one (or
more) switches for statistics collection, when a statistics
collection event is scheduled. This component determines
the set of switches to poll for obtaining the required
statistics at the schedules time stamps. For example, to
collect statistics about a flow, it is sufficient to query
the ingress switch only, and it is possible to determine
the statistics for the intermediate switches by simple
calculations. Authors in [21] have discussed a number
of heuristics for switch selection in the context of traffic
matrix calculation in SDN.

o Aggregator & Data Store: This module is responsible
for collecting raw data from the selected switches and
storing these raw data in the data store. This module
aggregates the collected raw-data to compute monitoring
information at requested aggregation levels. The data
store is an abstraction of a persistent storage system. It
can range from regular files to relational databases to
key-value stores.

Network monitoring applications
(written in any programming language)

Intrusion Link Usage Differentiated
Detection ik Lsag User Billing Qos
Monitor
\ System eece Management }
PayLess
RESTful API
Request Switch
[Interpreter][Sedte][Selector][Aggregator]
= ——
Data Store
Monitoring Framework

Northbound API

~~

Fig. 2. PayLess Network Monitoring Framework

B. Monitoring API

PayLess provides an RESTful API for rapid development of
network monitoring applications. Any programming language
that can used to access this API. A network application
can express high level primitives in its own context to
be monitored and get the collected data from the PayLess
data store at different aggregation levels. Here, we provide
a few examples to illustrate how network applications can
access this APIL. Every network application needs to create a
MonitoringRequest (Fig. 3) object and register it with
PayLess. The MonitoringRequest object contains the
following information about a monitoring task:

{"MonitoringRequest": {

H}

"Type": "["performance" | "security" | "failure" | 1",
"Metrics": [
{"performance": ["latency", "jitter", "throughput", "packet-drop", 1),

{"security": ["IDS-alerts",

"ACL-violations",

"Firewall-alerts",

<11

{"failure": ["MTBF", "MTTR"]}
1,
"Entity": ["<uri_to_script>"],
"AggregationLevel": ["flow" | "table" | "port" | "switch" | "user" | "custom": "uri_to_script"],
"Priority": ["real-time", "medium", "low", custom: "monitoring-frequency"],
"Monitoxr" ["direct", "adaptive", "random-sampling", "optimized", "custom": "uri_to_script"],
"Logging": ["default", "custom": "<uri_to_log_format>"]

Fig. 3.

Type: the network application needs to specify what type
of metrics it wants to be monitored e.g., performance,
security, fault-tolerance, efc.

Metrics: for each selected monitoring type, the network
application needs to provide the metrics that should be
monitored and logged. Performance metrics may include
delay, latency, jitter, throughput, etc. For security mon-
itoring, metrics may include IDS-alerts, firewall-alerts,
ACL-violations etc. for a specific switch, port, or user.
Failure metrics can be mean-time-before-failure or mean-
time-to-repair for a switch, link, or flow table.

Entity: this is an optional parameter specifies the network
entities that need to be monitored. In PayLess, network
users, switches, switch ports, flow-tables, traffic flows,
etc. can be uniquely identified and monitored. Network
application needs to specify which entities it wants to
monitor.

Aggregation Level: network applications must specify
the aggregation level (e.g., flow, port, user, switch efc.) for
statistics collection. PayLess provides a set of predefined
aggregation levels (Fig. 3), as well as the option to
provide a script to specify custom aggregation levels.
Priority: PaylLess provides the option to set priority
levels for each metric to be monitored. We have three
pre-defined priority levels: real-time, medium, and low.
Alternatively, an application can specify a custom polling
frequency. PayLess framework is responsible for selecting
the appropriate polling frequencies for the pre-defined
priorities.

Monitor: This parameter specifies the monitoring
method, for example, direct, adaptive, random-sampling,
or optimized. The default monitoring method is opti-
mized, in which case the PayLess framework selects the
appropriate monitoring method for balancing between
accuracy, timeliness, and network overhead. Apart from
the predefined sampling methods, an application may
provide a link to a customized monitoring method.
Logging: A network application can optionally provide a
LogFormat object to the framework for customizing the
output format. If no such object is provided then PayLess
writes the logs in its default format.

MonitoringRequest object

The MonitoringRequest object is specified using
JSON. Attributes of this object along with some possible
values are shown in Fig. 3. A network application registers
aMonitoringRequest object through PaylLess’s RESTful
APIL. After the registration is successful, PayLess provisions
monitoring resources for capturing the requested statistics and
places them in the data store. In response to a monitoring
request PayLess returns a data access-id to the network
application. The network application uses this access-id to
retrieve collected data from the data store.

For example, an ISP’s network application for user billing
may specify the MonitoringRequest object as shown
in Fig. 4. Here, the application wants to monitoring perfor-
mance metrics: throughput, and packet-drops for particular
users with a low priority using direct monitoring technique
and log the collected data in PayLess’s default format.

{"MonitoringRequest": {
"Type": "["performance"]",
"Metrics": [

{"performance": [
"throughput",
"packet-drop",

1},

]l

"Entity": ["user": "<user_router_id>"],
"AggregationLevel": ["user"],
"Priority": ["medium"],

"Monitor" ["direct"],

"Logging": ["default"]

H}
Fig. 4. MonitoringRequest for user billing application

Another example will be a real-time media streaming ser-
vice that needs to provide differentiated QoS to the user.
This application needs flow-level real-time monitoring data
to make optimal routing decisions. A possible sample for the
MonitoringRequest object is shown in Fig. 5.

PayLess also provides API functions for listing, updat-
ing, and deleting MonitoringRequest objects. Table I
provides a few example API URIs and their parameters for
illustration purpose. The first URIs provides the basic CRUD
functionality for the MonitorRequest object. The fifth URI

RESTful API URI

Parameter(s)

/payless/object/monitor_request/register

data=<JSON data as shown in Fig. 3>

/payless/object/monitor_request/update

id=<request_id>&data=<JSON data as shown in Fig. 3>

/payless/object/monitor_request/list

id=<application_id>

/payless/object/monitor_request/delete

id=<request_id>

/payless/log/retrieve

access-id=<access_id>

TABLE I
PAYLEsS RESTFUL API

{"MonitoringRequest": {
"Type": "["performance"]",
"Metrics": [

{"performance": [
"throughput",
"latency",
"Jjitter",
"packet-drop",

1},

1,

"Entity": ["flow": "<flow_specification>"],
"AggregationLevel": ["flow"],
"Priority": ["real-time"],
"Monitor" ["adaptive"],
"Logging": ["default"]
I
Fig. 5. MonitoringRequest for differentiated QoS

is used for accessing collected data from the data store.

IV. AN ADAPTIVE MONITORING METHOD

In this section, we present an adaptive monitoring algorithm
that can be used to monitor network resources. Our goal is to
achieve accurate and timely statistics, while incurring little
network overhead. We assume that the underlying switch to
controller communication is performed using the OpenFlow
protocol. Therefore, before diving into the details of the
algorithm, we present a brief overview of the OpenFlow
messages that are used in our framework.

OpenFlow identifies a flow using the fields obtained from
layer 2, layer 3 and layer 4 headers of a packet. When a
switch receives a flow that does not match with any rules in
its forwarding table, it sends a Packet In message to the con-
troller. The controller installs the necessary forwarding rules in
the switches by sending a F1owMod message. The controller
can specify an idle timeout for a forwarding rule. This refers
to the inactivity period, after which a forwarding rule (and
eventually the associated flow) is evicted from the switch.
When a flow is evicted the switch sends a FlowRemoved
message to the controller. This message contains the duration
of the flow as well as the number of bytes matching this
flow entry in the switch. Flowsense [23] proposes to monitor
link utilization in zero cost by tracking the PacketIn and
FlowRemoved messages only. However, this method has
large average delay between consecutive statistics retrieval.
It also does not perform well in monitoring traffic spikes.
In addition to these messages, the controller can send a
FlowStatisticsRequest message to the switch to query

about a specific flow. The switch sends the duration and byte
count for that flow in a FlowStatisticsReply message
to the controller.

An obvious approach to collect flow statistics is to poll
the switches periodically each constant interval of time by
sending the FlowStatisticsRequest message. A high
frequency (i.e., low polling interval) of polling will generate
highly accurate statistics. However, this will induce significant
monitoring overhead in the network. To strike a balance
between statistics collection accuracy and incurred network
overhead, we propose a variable frequency flow statistics
collection algorithm.

We propose that when the controller receives a PacketIn
message, it will add a new flow entry to an active
flow table along with an initial statistics collection time-
out, 7 milliseconds. If the flow expires within 7 mil-
liseconds, the controller will receive its statistics in a
FlowRemoved message. Otherwise, in response to the time-
out event (i.e., after 7 milliseconds), the controller will send a
FlowStatisticsRequest message to the corresponding
switch to collect statistics about that flow. If the collected
data for that flow does not significantly change within this
time period, i.e., the difference between the previous and
current byte count against that flow is not above a threshold,
say Aj, the timeout for that flow is multiplied by a small
constant, say «. For a flow with low packet rate, this process
may be repeated until a maximum timeout value of Ty,q.
is reached. On the other hand, if the difference in the old
and new data becomes larger than another threshold A, the
scheduling timeout of that flow is divided by another constant
. For a heavy flow, this process may be repeated until a
minimum timeout value of 7,,;, is reached. The rationale
behind this timeout adjustment is that we maintain a higher
polling frequency for flows that significantly contribute to
link utilization, and we maintain a lower polling frequency
for flows that do not significantly contribute towards link
utilization at that moment. If their contribution increases,
the scheduling timeout will adjust according to the proposed
algorithm to adapt the polling frequency with the increase in
traffic.

We optimize this algorithm further by batching
FlowStatisticsRequest messages together for flows
with same timeout. This will reduce the spread of monitoring
traffic in the network without affecting the effectiveness of
polling with a variable frequency. The pseudocode of this
algorithm is shown in Algorithm 1.

Algorithm 1 FlowStatisticsCollectionScheduling(Event e)
globals:

active_flows [/Currently Active Flows
schedule_table //Associative table of active flows
/I indexed by poll frequency
U // Utilization Statistics. Output of this algorithm
if e is Initialization event then
active_flows < ¢, schedule_table + ¢, U < ¢
end if
if e is a PacketIn event then
|« {e.switch, e.port, Tryin, 0)
schedule_table[Tmin] + schedule_table[Trin| U f
else if ¢ is timeout 7 in schedule_table then
for all flows f € schedule_table[r] do
send a FlowStatisticsRequest to f.switch
end for
else if ¢ is a FlowStatisticsReply event for flow f
then
dif f_byte_count < e.byte_count — f.byte_count
dif f_duration < e.duration — f.duration
checkpoint < current_time_stamp
Ulf.port]|f.switch][checkpoint] < (dif f_byte_count,
dif f_duration)
if dif f_byte_count < A; then
f.r < min(f.7a, Trmaz)
Move f to schedule_table|[f.T]
else if dif f_byte_count > A, then
o+ max(f.7/8, Trin)
Move f to schedule_table|f.7]
end if
end if

V. IMPLEMENTATION: LINK UTILIZATION MONITORING

As a concrete use case of our proposed framework and
the monitoring algorithm, we have implemented a prototype
link utilization monitoring application on Floodlight controller
platform. We have chosen Floodlight as the controller platform
for its highly modular design and the rich set of APIs to
perform operations on the underlying OpenFlow network. The
source code of the implementation is available in github [4].

It is worth mentioning that our prototype implementation is
intended to perform experiments and to show the effectiveness
of our algorithm. Hence, we have made the following simplify-
ing assumption about flow identification and matching without
any loss of generality. Since we are monitoring link utilization,
it is sufficient for us to identify the flows by their source and
destination IP addresses. We performed the experiments using
iperf [3] in UDP mode. The underlying network also had some
DHCEP traffic, which also uses UDP. We filtered out the DHCP
traffic while adding the flows to active flow table by looking
at the destination UDP port numbers?. It is worth noting that
all the components of our proposed monitoring framework are
not in place yet. Therefore, we resorted to implementing the

2DHCP uses destination port 67 and 68 for DHCP requests and replies,
respectively

link utilization monitoring application as a floodlight module.

We intercepted the PacketIn and FlowRemoved mes-
sages to keep track of flow installations and removals from
the switches, respectively. We also maintained a hash table
indexed by the schedule timeout value. Each bucket with
timeout 7, contains a list of active flows that need to be polled
every 7 milliseconds. Each of the bucket in the hashtable is
also assigned a worker thread that wakes up every 7 mil-
liseconds and sends a FlowStatisticsRequest message
to the switches corresponding to the flows in its bucket.
The FlowStatisticsReply messages are received asyn-
chronously by the monitoring module. The latter creates a
measurement checkpoint for each reply message. The contri-
bution of a flow is calculated by dividing its differential byte
count from the previous checkpoint by the differential time
duration from the previous checkpoint. The monitoring module
examines the measurement checkpoints of the corresponding
link and updates the utilization at previous checkpoints if nec-
essary. The active flow entries are moved around the hashtable
buckets with lower or higher timeout values depending on the
change in byte count from previous measurement checkpoint.
Currently, we have a basic REST API, which provides an
interface to get the link statistics (in JSON format) of all
the links in the network. However, our future objective is
to provide a REST API for allowing external applications
to register a particular flow for monitoring and obtaining the
statistics.

Although the current implementation makes some assump-
tion about flow identification and matching, this does not
reduce the generality of our proposed algorithm. Our long term
goal is to have a full functional implementation of the PayLess
framework for efficient flow statistics collection. Developing
network monitoring applications will be greatly simplified by
the statistics exposed by our framework. It is worth mentioning
that the proposed scheduling algorithm lies at the core of the
scheduler component of this framework, and no assumption
about the algorithm’s implementation were made in this pro-
totype. The only assumptions made here corresponds to the
implementation of link utilization monitoring application that
uses our framework.

VI. EVALUATION

In this section, we present the performance of a demo
application for monitoring link utilization. This application is
developed using the PayLess framework. We have also im-
plemented Flowsense and compared it to PayLess, since both
target the same use case. We have also implemented a baseline
scenario, where the controller periodically polls the switches
at a constant interval to gather link utilization information.
We have used Mininet to simulate a network consisting of
hosts and OpenFlow switches. Details on the experimental
setup is provided in Section VI-A. Section VI-B explains
the evaluation metrics. Finally, the results are presented in
Section VI-C.

23 25

28 30

T=0s 4
1
1
1

— : :
(h1,h8, 10Mbps) I 1
| o

Lot
(h2,h7.420Mbps)
1 1

(h3,h6, 20Mbps)

1
(h2,h7,20Mbps) (h2,h7, S0Mbps) (h2,h7, SOMbps)

1
e e e e e ————— (h1,h8,

[1
: 10Mbps) | 1
1 1 1 1

e —
(h2,h7, 50Mbps)

Fig. 6. Timing Diagram of Experiment Traffic

A. Experiment Setup

We have used a 3-level tree topology as shown in Fig. 7
for this evaluation. UDP flows for a total duration of 100s
between hosts were generated using iperf. Fig. 6 is the timing
diagram showing the start time, throughput and the end time
for each flow. We have set the idle timeout of the active
flows in a switche to 5s. We have also deliberately introduced
pauses of different durations between the flows in the traffic
to experiment with different scenarios. Pauses less than the
soft timeout were placed between 28th and 30th second, and
also between 33 and 35 seconds to observe how the proposed
scheduling algorithm and the Flowsense react to sudden traffic
spikes. The minimum and maximum polling interval for our
scheduling algorithm was set to 500ms and 5s, respectively.
For the constant polling case, a polling interval of 1s was used.
The parameters A; and Ao described in Section IV were set to
100MB. Finally, we have set « and 3 described in Section IV
to 2 and 6, respectively. 5 was set to a higher value to quickly
react and adapt to any change in traffic.

| Sw-3 |

Fig. 7.

| Sw-4 | | Sw-5 | Sw-6

Topology for Experiment

B. Evaluation Metrics

Utilization: Link utilization is measured as the instanta-
neous throughput obtained from that link and is measured in
units of Mbps. We report the utilization of the link between
switches Sw—0 and Sw-1 (Fig. 7). According to the traffic
mix, this link is part of all the flows and is most heavily used. It
also exhibits a good amount of variation in utilization. We also

experiment with different values of minimum polling interval
(Tmin) and show its effect on the trade-off between accuracy
and monitoring overhead.

Overhead: We compute overhead in terms of the number
of FlowStatisticsRequest messages sent from the con-
troller. We compute the overhead at timeout expiration events
when a number of flows with the same timeout are queried
for statistics.

C. Results

80 T T
Flowsense
70+ Payless
Periodic Polling

Link Utilization (Mbps)

20 30 40 50 60
Time (second)

Fig. 8.

Utilization Measurement

1) Utilization: Fig. 8 shows the utilization of Sw0-Swl
link over simulation time, measured using three different tech-
niques. The baseline scenario, i.e., periodic polling, which has
the most resemblance with the traffic in Fig. 6. Flowsense fails
to capture the traffic spikes because of the large granularity of
its measurement. The traffic pauses less than the soft timeout
value cause Flowsense to report less than the actual utilization.
In contrast, our proposed algorithm very closely follows the
utilization pattern obtained from periodic polling. Although it
did not succeed to fully capture the first spike in the traffic, it
quickly adjusted itself to successfully capture the next traffic
spike.

2) Overhead: Fig. 9 shows the messaging overhead of
the baseline scenario and our proposed algorithm. Since
Flowsense does not send FlowStatisticsRequest mes-
sages, therefore it has zero messaging overhead, hence not
shown in the figure. The fixed polling method polls all the

30

) Payless’ ''''''''
Periodic Polling -
25 F

Monitoring Overhead (OpenFlow Messages)

Time (second)

Fig. 9. Messaging Overhead

active flows after the fixed timeout expires. This causes a
large number of messages to be injected in the network at the
query time. On the other hand, our proposed algorithm reduces
the spike of these messages by assigning different timeouts to
flows and spreading the messages over time. It is also evident
in Fig. 9 that our algorithm has more query points across the
timeline, but at each time line it sends out less messages in
the network to get statistics about flows. In some cases, our
algorithm sends out 50% less messages than that of periodic
polling method.

Although Flowsense has zero measurement overhead, it is
much less accuracy compared to our adaptive scheduling algo-
rithm. In addition, the monitoring traffic incurred by PayLess is
very low, only 6.6 messages per second on average, compared
to 13.5 messages per second on average for periodic polling. In
summary, the proposed algorithm for scheduling flow statistics
can achieve an accuracy close to constant periodic polling
method, while having a reduced messaging overhead.

300 Actual Utilization
250
200
150
100

50

T-min = 250ms

300
250
200
150
100

50

300
250
200
150
100

50

300
250
200
150
100

50

Link Utilization (Mbps)

0 20 40 60 80 100

Time (second)

Fig. 10. Effect of T}y, on Measured Utilization

3) Effect of Minimum Polling Frequency, Tmin: As ex-
plained in Algorithm 1, our scheduling algorithm adopts to the
traffic pattern. For, a rapidly changing traffic spike, the poling
frequency sharply decreases and reaches 7.,;,. In Fig. 10, we
present the impact of 7,,;, on monitoring accuracy. Evidently,
the monitoring data is very accurate for 7,,;, = 250ms and
it gradually degrades with higher values of 7,,;,. However,
monitoring accuracy comes at the cost of network overhead as
presented in Fig. 11. This figure presents the root-mean-square
(RMS) error in monitoring accuracy along side the messaging
overhead for different values of 7,,;,. This parameter can
be adjusted to trade-off accuracy with messaging overhead,
depending on the application requirements.

250 T T r T 100
Message Overhead oesa
2 Measurement Error 772227 .
2 %)
£ 200 | 4 80
= -
% % > o g
o)) | g 5) i =
g 00 W ? ¢ 1% 5
a y . y ; o
(0] c
IS [0)
« 100 | 4 40 I
° g
2 2
Qo
E 50 1 20 é
z %
0 A /) . 0
250 500 1000 2000
Tmin (mS)
Fig. 11. Overhead and measurement error

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced PayLess — a flexible and
extendable monitoring framework for SDN. To the best of
our knowledge, PayLess is the only monitoring framework
for SDN. Almost every aspect of monitoring can be specified
using PayLess’s generic RESTful API. Moreover, the core
components in PayLess framework can be replaced by custom
implementations without affecting the other components. To
demonstrate the effectiveness of PayLess framework, we have
presented an adaptive scheduling algorithm for flow statistics
collection. We implemented a concrete use case of monitoring
link utilization using the proposed algorithm. We have eval-
uated and compared its performance with that of Flowsense
and a periodic polling method. We found that the proposed
algorithm can achieve higher accuracy of statistics collection
than FlowSence. Yet, the incurred messaging overhead is only
50% of the overhead in an equivalent periodic poling strategy.
Our long term goal along this work is to provide an open-
source, community driven monitoring framework for SDN.
This should provide a full-fledged abstraction layer on top
of the SDN control platform for seamless network monitoring
application development.

REFERENCES

[1] Cisco NetFlow site reference. http://www.cisco.com/en/US/products/ps6601/
products_white_paper0900aecd80406232.shtml.

[2] Floodlight openflow controller. http://www.projectfloodlight.org/floodlight/.

[3] Iperf: TCP/UDP Bandwidth Measurement Tool. http://iperf.fr/.

[4] “Payless” source code. http://github.com/srcvirus/floodlight.

[5] POX OpenFlow Controller. https://github.com/noxrepo/pox.

[6] Traffic Monitoring using sFlow. http://www.sflow.org/.

[71 C. Alippi, G. Anastasi, M. Di Francesco, and M. Roveri. An adaptive
sampling algorithm for effective energy management in wireless sensor
networks with energy-hungry sensors. Instrumentation and Measure-
ment, IEEE Transactions on, 59(2):335-344, 2010.

[8] G. Androulidakis, V. Chatzigiannakis, and S. Papavassiliou. Network
anomaly detection and classification via opportunistic sampling. Net-
work, IEEE, 23(1):6-12, 20009.

[9] B. Gedik, L. Liu, and P. Yu. Asap: An adaptive sampling approach to
data collection in sensor networks. Parallel and Distributed Systems,
1IEEE Transactions on, 18(12):1766—-1783, 2007.

[10] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker. NOX: Towards an operating system for networks.
SIGCOMM Comput. Commun. Rev., 38(3):105-110.

[11] E. Hernandez, M. Chidester, and A. George. Adaptive sampling for
network management. Journal of Network and Systems Management,
9(4):409-434, 2001.

[12] A. Jain and E. Y. Chang. Adaptive sampling for sensor networks. In
Proceeedings of the 1st international workshop on Data management for
sensor networks: in conjunction with VLDB 2004, pages 10-16. ACM,
2004.

[13] L. Jose, M. Yu, and J. Rexford. Online measurement of large traffic
aggregates on commodity switches. In Proc. of the USENIX HotICE
workshop, 2011.

[14] J. Kho, A. Rogers, and N. R. Jennings. Decentralized control of adaptive
sampling in wireless sensor networks. ACM Transactions on Sensor
Networks (TOSN), 5(3):19, 2009.

[15] H. Kim and N. Feamster. Improving network management with software
defined networking. Communications Magazine, IEEE, 51(2):114-119,
2013.

[16] A.D. Marbini and L. E. Sacks. Adaptive sampling mechanisms in sensor
networks. In London Communications Symposium, 2003.

[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69-74,
2008.

[18] M. Moshref, M. Yu, and R. Govindan. Resource/Accuracy Tradeoffs
in Software-Defined Measurement. In Proceedings of HotSDN 2013,
August 2013. to appear.

[19] A. C. Myers. JFlow: Practical mostly-static information flow control.
In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 228-241. ACM, 1999.

[20] C. Systems. Cisco CNS NetFlow Collection Engine.
http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/index.html.

[21] A. Tootoonchian, M. Ghobadi, and Y. Ganjali. OpenTM: traffic matrix
estimator for OpenFlow networks. In Passive and Active Measurement,
pages 201-210. Springer, 2010.

[22] R. Willett, A. Martin, and R. Nowak. Backcasting: adaptive sampling
for sensor networks. In Information Processing in Sensor Networks,
2004. IPSN 2004. Third International Symposium on, pages 124-133,
2004.

[23] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V.
Madhyastha. FlowSense: Monitoring Network Utilization with Zero
Measurement Cost. In Passive and Active Measurement, pages 31-41.
Springer, 2013.

