
1

A Disaggregated Packet Processing Architecture for
Network Function Virtualization

Shihabur Rahman Chowdhury, Student Member, IEEE, Anthony, Haibo Bian,
Tim Bai, and Raouf Boutaba, Fellow, IEEE

Abstract—Network Function Virtualization (NFV) promises to
reduce the capital and operational expenditure for network oper-
ators by moving packet processing from purpose-built hardware
to software running on commodity servers. However, the state-
of-the-art in NFV is merely replacing monolithic hardware with
monolithic Virtual Network Functions (VNFs), i.e., software that
realizes different network functions. This is a good first step
towards transitioning to NFV, however, common functionality is
repeatedly implemented in monolithic VNFs. Repeated execution
of such redundant functionality is particularly common when
VNFs are chained to realize Service Function Chains (SFCs) and
results in wasted infrastructure resources. This stresses the need
for re-architecting the NFV ecosystem, through modular VNF
design and flexible service composition. From this perspective,
we propose MicroNF (µNF in short), a disaggregated packet
processing architecture facilitating the deployment of VNFs
and SFCs using reusable, loosely-coupled, and independently
deployable components. We have implemented the proposed
system, including the different architecture components and
optimizations for improving packet processing throughput and
latency. Extensive experiments on a testbed demonstrate that:
(i) compared to monolithic VNF based SFCs, those composed
of µNFs achieve the same packet processing throughput while
using less CPU cycles per packet on average; and (ii) µNF-based
SFCs can sustain the same packet processing throughput as those
based on state-of-the-art run-to-completion VNF architecture
while using lesser number of CPU cores.

Index Terms—Network function virtualization, microservices,
middleboxes, virtual network function decomposition.

I. INTRODUCTION

Network operators ubiquitously deploy hardware middle-
boxes [2] (e.g., Network Address Translators (NATs), Fire-
walls, WAN Optimizers, Intrusion Detection Systems (IDSs),
etc.) to realize different network services [3]. Despite being
an integral part of modern enterprise and telecommunication
networks, middleboxes are proprietary, have little to no pro-
grammability and vertically integrate packet processing soft-
ware with the hardware. Such closed and inflexible ecosystem

Manuscript received April 15, 2019; revised November 26, 2019; accepted
January 28, 2020. An earlier version of this work appeared in [1]. This
work was supported in part by the NSERC Create program on Network
Softwarization and in part by an NSERC Discovery Grant. This work also
benefited from the use of Tembo compute cluster at the University of Waterloo.

Shihabur Rahman Chowdhury, and Raouf Boutaba are with the
David R. Cheriton School of Computer Science, University of Water-
loo, Waterloo, ON N2L 3G1, Canada (email: sr2chowdhury@uwaterloo.ca,
rboutaba@uwaterloo.ca)

Anthony is with Huawei Technologies Canada, Markham, ON L3R 5A4,
Canada (email: anthony.anthony@uwaterloo.ca)

Haibo Bian is with Bioinformatics Solutions Inc., Waterloo, ON N2L 6J2,
Canada (email: haibo.bian@uwaterloo.ca)

Tim Bai is with Desire2Learn Canada, Kitchener, ON N2G 1H6, Canada
(email: tim.bai@uwaterloo.ca)

explains the high capital and operational expenditures incurred
by network operators. This led to the Network Function Virtu-
alization (NFV) movement initiated in 2012 [4]. NFV proposes
to disaggregate the tightly coupled Network Functions (NFs)
and hardware middleboxes, and deploy the NFs as Virtual
Network Functions (VNFs) on commodity servers. Through
this disaggregation, NFV promises to reduce CAPEX by
consolidating multiple NFs on the same hardware, and reduce
OPEX by enabling on-demand flexible service provisioning.

Significant effort has been dedicated to NFV research
since its inception [5], including for: resource allocation
and scheduling [6], middlebox outsourcing [3], [7], man-
agement platforms [8]–[10], fault-tolerance [11]–[14], state
management [15]–[18], traffic steering through VNFs [19],
and programming models and runtime systems to support
VNFs and SFCs [20]–[26]. However, a common trait observed
in these works is the one-to-one substitution of monolithic
hardware middleboxes by their monolithic VNF counterparts.
Indeed, this is a logical first step for transitioning to NFV.
However, monolithic VNFs can be a barrier to achieving fine-
grained resource allocation and scaling, and can lead to wasted
infrastructure resources.

A fundamental problem with monolithic VNF implemen-
tation is that many packet processing tasks such as packet
I/O, parsing and classification, and payload inspection are
repeated across a wide range of enterprise NFs [27]. This has
several negative consequences. First, redundant development
and optimization effort on these common tasks across different
VNFs. Second, monolithic VNFs restrict how many packet
processing tasks can be consolidated on the same hardware.
For instance, a Firewall and an IDS, both perform packet
classification [24]. Since the VNFs are monolithic, we cannot
consolidate packet classification as a single function, allocate
just enough resources for processing the cumulative traffic of
the Firewall and the IDS, and deploy the classifier as a single
entity. Third, monolithic VNFs impose coarse-grained resource
allocation and scaling. This non-exhaustive list of issues poses
a barrier in achieving the agility promised by NFV. In this
regard we set out to answer the following question: What is
an appropriate software architecture for VNFs that will enable
better function consolidation on the same hardware and finer-
grained resource allocation while maintaining the same level
of performance as state-of-the-art approaches?

There is a substantial body of research on modular packet
processing software [20], [22], [23], [30], [31]. However, in
most cases the end-product is still a monolithic software,
which typically executes in a run-to-completion mode, i.e.,

(a) Example SFC use case from [28]

(b) Functional decomposition of NFs (adapted from [29])

Fig. 1. Common packet processing tasks across NFs

applies all the functionality of an NF or even an SFC on a
batch of packets read from the Network Interface Card (NIC)
before they exit the system. This model is usually easier to
scale, however, it still suffers from the coarse-grained resource
allocation imposed by monolithic software.

In this paper, we aim at building VNFs from simple building
blocks by taking advantage of the commonality of packet
processing tasks. To this end, we propose µNF, a disaggregated
packet processing architecture. µNF takes the disaggregation
of middleboxes one step further and decompose VNFs into
independently deployable, loosely-coupled, lightweight, and
reusable packet processors, that we call MicroNFs (µNFs
for short). VNFs or SFCs are then realized by composing a
packet processing pipeline from these independently deploy-
able µNFs. Such decomposition will allow finer-grained re-
sources allocation, independent scaling of µNFs thus increased
flexibility, and independent development and maintenance of
packet processing components. µNF is built on the thesis of
CoMb [27] that consolidating common packet processing tasks
from multiple NFs may lead to better resource utilization.
However, CoMb’s focus was not to address the engineering
challenges for realizing such a system (e.g., software architec-
ture, performance optimizations), which is the key contribution
of this paper. Specifically, we have the following contributions:

• A quantitative study to demonstrate how repeated appli-
cation of common packet processing tasks in an SFC can
affect CPU resource utilization (Section II).

• An architecture for composing VNFs and SFCs from
independently deployable, loosely-coupled, lightweight,
and reusable components that we call µNFs (Section IV).

• Implementation of architecture components including the
µNFs, communication primitives between µNF, and CPU
sharing between µNFs to improve CPU utilization with-
out sacrificing packet processing throughput (Section VI).

• Optimizations for improving packet processing through-
put of µNFs on multi-socket NUMA machines, and
packet processing latency in µNF-based network services
(Section V).

• Evaluation of the system through testbed experiments
(Section VII). Our key findings are: (i) compared to an
SFC composed from monolithic VNFs, µNFs can achieve
the same throughput using less CPU cycles per packet on
average; (ii) µNFs can sustain the same packet processing
throughput as the state-of-the-art run-to-completion VNF
architecture [23] using lesser number of CPU cores.

II. MOTIVATION

Our motivation for developing a disaggregated packet pro-
cessing architecture stems from the observation that many
packet processing tasks, such as packet I/O, parsing and
classification, and payload inspection are repeated when VNFs
are chained in an SFC. We demonstrate this using the
SFC in Fig. 1(a), typically found in enterprise Data Centers
(DCs) [28]. This SFC consists of the following VNFs:

• WAN Optimizer: Placed at a DC and WAN boundary
for optimizing WAN link usage, e.g., compresses/decom-
presses HTTP payload to reduce WAN traffic [32].

• Edge Firewall: Allows or denies packets based on layer
2-4 header signature.

• Monitoring Function: Consists of different counters
such as a packet size distribution counter, a counter for
packets containing certain URLs, etc.

• Application Firewall: Filters packets based on applica-
tion layer information, e.g., block HTTP requests with
embedded SQL injection attacks (similar to [33]).

• Load Balancer: Distributes packets to back-end servers
based on flow signature.

We can decompose these VNFs into smaller packet pro-
cessing tasks as shown in Fig. 1(b). Clearly, tasks such as

packet I/O, parsing and classifying HTTP packets are repeated
in these VNFs. In a monolithic implementation, developers
will separately implement and optimize these tasks in the
respective VNFs. Among other consequences, the benefits of
optimization in one implementation cannot be leveraged into
others because of the tight coupling between the tasks.

An elaborate qualitative discussion on the drawbacks of
repeating common tasks across VNFs in an SFC can be
found in [29]. In this paper, we perform an experimental
study to demonstrate possible performance implications of
repeating common packet processing tasks in an SFC by
comparing between the following two deployment configu-
rations: (i) Click [30] based monolithic VNFs chained using
virtual Ethernet (veth) pairs (Fig. 2(a)); and (ii) a single Click
configuration implementing the functionality of the same SFC
from configuration-i, while removing the repeated common
elements (Fig. 2(b)). For both cases we play the same traffic
(HTTP packet trace generated from access log for a moderate
size public web-service (≈15K hits/month)) and measure the
average CPU cycles/packet required by each type of Click
element. Our objective is to measure the wasted CPU cycles
for repeating common tasks across an SFC. Note that this
study complements that of the one presented in [27] by
demonstrating the impact on an SFC rather than considering
single middlebox applications.

(a) Monolithic VNFs chained with veth pairs (configuration-(i))

(b) One single optimized click configuration (configuration-(ii))

Fig. 2. Motivational Experiment Scenarios

We deployed the following simplified form of the SFC
from Fig. 1(a): Edge Firewall → Monitoring Function →
Application Firewall. We implemented our own Click elements
(HttpClassifier, CountUrl, and ValidateUrl) when Click’s ele-
ment library did not have any elements with similar function-
ality. We also instrumented the Click elements to measure the
number of CPU cycles spent in processing each packet.

We present the savings in CPU cycles obtained from
removing repeated elements in the optimized configuration,
i.e., configuration-(ii) in Table I. We observed a per element

savings of up to ≈70%. However, as shown in Table I, not all
elements contribute equally to packet processing, hence, the
overall gain at the end is 29.5%, which is still significant.

TABLE I
RESULTS FROM MOTIVATIONAL EXPERIMENT

Click Element CPU Cycles Saved Element Weight
Type in configuration-(ii) in configuration-(i)

FromDevice 71.9% 0.22%
ToDevice 67.1% 0.25%

CheckIPHeader 65.1% 0.44%
HttpClassifier 48.28% 47.8%

Overall 29.5% –

This result further motivates re-architecting VNFs by ex-
ploiting the commonality in packet processing in a way to
achieve better resource utilization. To this end, we argue in
favor of adopting a microservice-like architecture [34] for
building VNFs and SFCs. We propose to disaggregate VNFs
into independently deployable packet processors, that we call
µNFs. VNFs or SFCs can then be realized by orchestrating
a packet processing pipeline composed from the µNFs. With
this, one can think of applying optimizations such as con-
solidating multiple instances of a common packet processing
function into a single instance for better CPU utilization. We
will experimentally demonstrate CPU utilization gains from
using a µNF-based SFC over that composed from monolithic
VNFs (i.e., configuration-(i)) in Section VII-C2.

III. DESIGN GOALS AND CHOICES

Our objective is to re-architect the VNFs by exploiting
their overlapping functionality enabling finer-grained resource
allocation and achieving better resource utilization. To achieve
these objectives we start with the following design goals:

Reusability Frequently appearing packet processing func-
tions should be developed once and shared across VNFs.

Loose-coupling: Packet processing functions should not
be tightly coupled, so that they can be deployed and scaled
independently, allowing fine-grained resource allocation.

Transparency: Implementation of a packet processing func-
tion should not be affected by their communication pattern
(e.g., one-to-one, one-to-many, etc.).

Lightweight communication primitives: Communication
between packet processing elements should not incur signifi-
cant overhead hurting the overall performance.

The first goal can be achieved by dividing large packet
processing software into smaller packet processing tasks or
functionality. Then to achieve the rest of the goals we have
the following two design alternatives [35]:

Run-to-completion: Packet processors are implemented as
a set of identical threads or processes, each implementing the
entire packet processing logic (i.e., an NF or even an SFC).

Pipelining: Packet processors are implemented by compos-
ing a pipeline of heterogeneous threads or processes, each
performing a specific packet processing task.

The state-of-the-art modular VNF designs such as
ClickOS [20] and NetBricks [23] have adopted a run to
completion model, where packets are passed between different

functions in the same address space and processed in a single
thread or process. When more processing capacity is required,
the whole VNF (or SFC) instance is scaled out and traffic
is split between the instances using NIC features such as
RSS [36]. One limitation of this model is that it is hard to right
size resource allocation to individual components because of
the tight coupling between them. In contrast, pipelining mode
satisfies more of our design goals. Individual components can
be allocated their own resource, independently deployed and
scaled (loose-coupling), and it is easier to decouple how el-
ements process packets from their underlying communication
pattern (transparency).

IV. SYSTEM DESCRIPTION

A. Assumptions

We assume that the network operator owning the infras-
tructure has control over the VNFs that are being deployed.
These VNFs can be deployed at the telecommunication central
offices or Internet Service Provider point-of-presences (PoPs)
converted into edge data centers [37], [38]. When SFCs
are deployed inside these edge data centers their VNFs are
typically in the same layer-2 domain.

We do not consider Virtual Machines (VMs) as the choice
of deployment for individual µNFs since that would add a
significant overhead for µNF to µNF communication [23].
Moreover, we also do not require separate OSs and kernel
features for deploying the µNFs, which is typically provided
by VMs. Rather we choose using either processes or containers
for µNF deployment. At this point we leave the choice of
using processes or containers to the network operator since
our evaluation results demonstrated similar performance.

We assume that the µNF descriptions (e.g., what type of
operation the µNF performs on what part of the packet header
or payload) and template for composing VNFs from µNFs will
be provided by the VNF providers. The SFC request will come
from the network operator. Currently, we use JSON format for
SFC specification. However, we do not restrict ourselves as to
what can be used for specifying SFCs. We plan to support
standards such as TOSCA [39] and YANG [40].

Finally, we assume that the µNF developers will provide
configuration generator for each µNF. This will generate
the necessary configuration for a µNF (e.g., the types of
communication primitives to create), when presented with a
µNF type and its connectivity with neighboring µNFs.

B. System Architecture: Birds Eye View

A high level view of our system is presented in Fig. 3(a).
It comprises the following components: a µNF orchestrator,
per physical server orchestration agent, µNFs, and Rx and Tx
services for reading packets from and to the NICs, respectively.
The northbound API facilitates SFC life-cycle management
and monitoring, and allows network operators to interact with
the system. The µNF orchestrator is responsible for making
global decisions such as µNF placement across physical
servers to realize SFCs and make µNF migration decisions,
among others.

(a) System Components

(b) µNF Architecture

Fig. 3. System Architecture

The orchestration agent acts as the local orchestration
endpoint for a given machine. A southbound API between the
global orchestrator and orchestration agents facilitates their
communication. For example, the µNF orchestrator can use
the southbound API for requesting local orchestration agents
to allocate resources for µNFs, deploying µNFs with proper
configuration and create the communication primitives for
µNF to µNF communication.

The smallest deployable units in the system are the µNFs.
µNFs usually perform a specific packet processing task and
are independently deployable loosely-coupled entities. As de-
scribed earlier in Section III, one of our design goals is to
keep the µNFs simple and keep the communication pattern
between µNFs transparent from how they process the packets.

Finally, we have two special µNFs, namely the Rx and
Tx services, responsible for reading packets from and writ-
ing packets to the NIC, respectively. These two services
collectively form a lightweight software data path for the
µNFs. By isolating these two services from the µNFs we
have the flexibility to adjust I/O batch sizes according to
the consumption/production rate of the µNFs. Moreover, such
separation allows us to make the operations on hardware
transparent to other packet processing µNFs.

C. System Components

1) µNF Orchestrator: The µNF orchestrator is responsible
for realizing an SFC by orchestrating a packet processing
pipeline consisting of µNFs across multiple machines. Net-
work operators can interact with the orchestrator through a
north-bound API. The orchestrator is also responsible for
global management decisions such as handling machine fail-
ures, making scaling decision, etc.

2) µNF Orchestration Agent: µNF orchestration agent is
the local orchestration endpoint on a physical machine. It
has a northbound API for the µNF orchestrator to act on it.
The agent is responsible for performing local actions such as
deploying µNFs, creating communication primitives to enable
inter µNF communication on the same machine, etc.

3) µNFs: A µNF is the unit of packet processing in
the system as well as the unit of deployment and resource
allocation. It consists of a number of IngressPorts, a number
of EgressPort and a PacketProcessor (Fig. 3(b)). The Ingress-
Ports and EgressPorts provide methods to pull packets from
and push packets to the previous and the next µNF in the
packet processing pipeline, respectively. When µNFs from
different VNFs are consolidated, the IngressPort to EgressPort
mapping table helps in routing packets to different branches
of the pipeline.

The aforementioned ports are of abstract type and can have
different implementations (details in Section VI). One of our
design goals is to keep packet processing logic of µNFs
oblivious to µNF to µNF communication pattern. The port
abstraction simplifies µNFs’ design and implementation and
keeps them loosely coupled with each other. For instance,
we implement a LoadBalancedEgressPort that has the same
interfaces as EgressPort. However, the implementation dis-
tributes packets to multiple next-stage IngressPorts in a round-
robin fashion. From a µNF’s point-of-view this distribution of
packets to multiple next stage µNFs is completely transparent.

4) Rx Service: Rx service is the interface between host
NIC(s) and the µNFs. Rx service keeps hardware specific
configurations (e.g., number of NICs, number of Rx queues)
and operations (e.g., flow classification in either hardware or
software based on NIC capabilities) transparent to the µNFs.
The Rx service can be thought of as a lightweight data path
(similar to [41], except that complex data path functions are
implemented as independent µNFs in our system).

5) Tx Service: Tx service sits between the µNFs and the
host NIC. Common Tx specific tasks such as tagging packets
of the same SFC, rewriting destination MAC address with next
hop MAC address, writing packets to different NIC Tx queues,
etc., are consolidated inside the Tx service.

D. SFC Deployment

As discussed earlier, the µNF orchestrator is the entry point
for the network operators to deploy an SFC composed of
µNFs. One of our goals is to ensure that from the network
operators point-of-view the SFC request does not look differ-
ent from what they are used to seeing, i.e., they should not
be required to specify µNF specific configurations. It is up to
the orchestrator to determine the optimal composition of µNFs
that offers the semantics of the user requested SFC.

1) Inputs: In what follows, we describe the inputs to the
orchestrator in a bottom up fashion:

µNF Descriptor: A µNF descriptor defines different at-
tributes of a µNF. Currently, we support the following at-
tributes: statefulness of the µNF and types of action (e.g., No
Operation (NOP), ReadOnly, or ReadWrite) a µNF performs
on the packet headers at different protocol layers. For instance,

the following is a descriptor for a layer 3-4 classifier that
performs only ReadOnly operation on the packet headers:

PacketProcessorClass: "TCPIPClassifier"
Stateful: "Yes"
L2Header: "NOP"
L3Header: "ReadOnly"

Meta-data about the µNFs assist in performing optimiza-
tions (detail discussion in Section V) when composing SFCs.

VNF templates: A VNF template is a blueprint of real-
izing a VNF from µNFs and we represented it by a packet
processing graph composed of the constituent µNFs. VNF
templates can be considered analogous to VNF descriptors
defined in ETSI NFV MANO specification [42]. A VNF
template consists of the nodes of the processing graph (i.e.,
the µNFs) and the links representing the order of packet
processing between µNFs. The links can be labeled with
the output of the source µNF for that link. Labels act as a
filter, i.e., only packets producing results equal to the label
are forwarded along that link. Examples of VNFs and VNF
templates are presented in Fig. 1(b). If we take the Application
Firewall VNF from Fig. 1(b) as an example, it is composed
from six independently deployable µNFs. Annotations on the
edges represent classification results at different stages, e.g.,
whether a packet contains HTTP payload or not.

SFC: An SFC request is a directed graph, where the nodes
are the VNFs and a directed link between two nodes represents
the order that traffic should follow. Links can have labels in an
SFC indicating VNF specific output. µNF descriptors provided
by VNF providers may include more or less information than
what we have described. The lesser information they contain,
the lesser constraints we may have in placing the constituent
µNFs.

2) Sequence of Operations for SFC Deployment: The µNF
orchestrator combines the constituent VNF templates of an
SFC, removes redundant µNFs and builds a µNF forwarding
graph with the same semantics as the SFC request. The graph
construction phase can take µNF specific meta-data into ac-
count to perform optimizations such as consolidating multiple
µNF instances of the same type into one and performing
optimization such as parallelizing the executing of multiple
µNFs on the same packet whenever possible.

After the µNF orchestrator builds an optimized µNF pro-
cessing graph and determines the placement of µNFs, it then
requests agents on the selected machines to deploy their parts
of the graph. µNF orchestrator also generates configuration of
each µNF in the graph by leveraging the developer provided
configuration generators and provides the agents with these
generated configurations. Upon receiving the µNF processing
subgraph and the configurations, the agent first allocates the
necessary resources, creates the communication primitives,
and deploys and connects the µNFs using the instantiated
communication primitives.

E. Auto-scaling

We propose to use a simple packet drop monitoring based
mechanism to take auto-scaling decisions. Once µNFs are
deployed, the local agents continuously monitor for packet

drops on all EgressPort – IngressPort pairs. A consistent drop
indicates that the µNF attached to the IngressPort is not able
to match the processing rate of the µNF attached to the
EgressPort. This triggers an auto-scaling event in the agent.
The agent then spawns another instance of the bottleneck µNF
and modifies the corresponding EgressPort in the pair to a
LoadBalancedEgressPort (described in Section IV-C), which
load balances traffic across the scaled-out instances.

However, there is a delay between detecting consistent
packet drop and actually deploying another µNF instance
to mitigate packet drops. Since the agent is continuously
monitoring, it will keep seeing a packet drop during this period
and trigger another scale-out event even before the first one
completes. To avoid this, we assign a cool down timer to the
µNF that is being scaled-out and do not trigger another scale-
out event until the cool down timer has expired.

V. OPTIMIZATIONS

A. Pipelined Cache Pre-fetching

One potential issue that might arise from our design of µNF
is when using multiple processors in a NUMA configuration.
In such configuration, each processor socket has its local
memory bank and the access time to local and remote memory
banks are not uniform. Processing packets on a NUMA zone
(i.e., socket) other than the one where the NIC is attached has
performance implications due to remote memory invocation.
To circumvent this problem, we perform a pipelined cache
pre-fetching inside every µNF. It works as follows. Before
processing a batch of packets, a µNF first pre-fetches a cache-
line from the first k packets in the batch. Then it proceeds to
process the batch. While packet i from the batch is being
processed, a cache-line from packet i + k is pre-fetched into
the cache. In this way, when a packet is being processed, the
first level cache is very likely to be warm with a cache-line
worth data from that packet (which contains the header fields).
Thus potentially increasing the first level cache hit rate and
masking the remote memory access latencies to some extent.
We experimentally evaluate the impact of this optimization
in Section VII-B2.

B. Parallel execution of µNFs

In a pipelined packet processing model, the packet pro-
cessing elements typically operate on a batch of packets in
a sequential manner. This is often unavoidable since one
µNF only processes the set of packets as determined by
the previous stage µNF. For instance, in Fig. 1(b), the L7
classifier µNF in the Application Firewall determines the set of
packets to be processed by the URL Validator µNF. However,
there are scenarios where sequential packet processing can
be avoided. For example, in the monitoring function from
Fig. 1(b), the counting function performs a read-only operation
on the packets. Therefore, if another counting function was
part of the Monitoring function, these two could be safely
executed in parallel on the same set of packets.

We parallelize the execution of consecutive µNFs from the
µNF processing graph that are placed on the same machine
by employing techniques similar to the ones discussed in [25],

[43], [44]. Parallelization is performed based on the type of
operation they perform on the packet header (specified in
µNF descriptor). When consecutive µNFs perform read-only
operations on the packet header, or operate on disjoint regions
of the header, or do not modify the packet stream (e.g., not
dropping packets), only then we parallelize their execution and
assign them distinct CPU cores on the same NUMA zone. One
issue with parallel execution is to ensure synchronization after
the parallel processing stage, i.e., a µNF β that is just after the
parallel processing state, should be able to start processing a
packet only if the packet has been processed by all the µNFs
in the parallel processing stage. Such synchrony is achieved
through special IngressPort and EgressPort implementations
(details in Section VI-D). These ports embed a counter as
packet meta-data before parallel execution begins. At the
parallel execution stage, each µNF atomically increases the
counter after its processing is complete. At µNF β, the Ingress-
Port ensures that only packets with appropriate counter value
are passed on to β’s PacketProcessor. Moving the synchrony
mechanism into ports thus keeps the µNF design simple.

VI. IMPLEMENTATION

One option for implementing the proposed system is to
adapt existing modular packet processing frameworks such as
Click [30] to a multi-process model. However, Click comes
with a lot of legacy code, some of which is not useful for our
case (e.g., scheduling multiple elements inside a Click binary).
Also, Click was originally designed and optimized for a run-to-
completion packet processing model, which is fundamentally
different from the pipeline model adopted by µNF. Therefore,
re-engineering Click and similar systems require significant
refactoring of many of their subsystems such as component
scheduling, packet transfer, etc., to make them efficiently work
in a pipeline model. Finally, we wanted to build the system
in a way such that it can process packets at 10 Gbps line-
rate at least (current de facto capacity for commodity NICs)
while maximizing CPU usage on the servers. It was becoming
cumbersome to optimize Click’s performance and refactor its
subsystems for pipeline model, hence, we decided to build the
system from scratch.

We have implemented a prototype of our system using C++
(agent and µNFs) and Python (orchestrator). At this point we
focus more on developing the µNFs and their communication
primitives. Therefore, our current orchestrator is limited in
functionality and acts more as a convenience mechanism for
testing. We use Intel DPDK [45] for kernel bypass packet
I/O and hugetlbfs [46] for sharing memory between µNFs.
We plan to open-source our current implementation in the
near future. In the remainder of this section we describe the
implementation of the system components.

A. Agent

Agents are implemented in C++ and run as primary DPDK
processes. During initialization, an agent pre-allocates memory
buffers for the NIC to store incoming packets, and exposes an
RPC-based control API for the orchestrator. The orchestrator
can use this API to deploy part of a µNF processing graph on

a machine. When such a request is received by an agent, it
deploys the µNFs according to the orchestrator specified con-
figuration and creates the necessary communication primitives
(details in Section VI-D). Agents also monitor the µNFs and
take scaling out decisions.

B. µNF

µNFs are implemented by leveraging DPDK APIs. Each
µNF runs as a stand-alone secondary DPDK process. Since
DPDK allows only one process to be the primary, i.e., have
the privileges of memory allocation, µNFs run as secondary
DPDK processes. When required, µNFs obtain pre-allocated
objects from a memory pool shared with the agent. Memory
sharing between µNFs and between a µNF and the agent is
enabled by hugetlbfs. The hugetlbfs is mounted on a directory
accessible to both the µNFs and the agent, and contains virtual
to physical memory mapping of the shared memory regions.
One caveat in this shared memory model is that each process
should have exactly the same virtual address space layout in
order to successfully translate the shared virtual memory to
their physical locations. To do so we had to disable Address
Space Layout Randomization (ASLR), a Linux kernel feature
for preventing buffer overflow attacks [47]. This is a security
vulnerability and is a limitation in our current implementation.
However, this is also a limitation of the technology at hand
and solving it can be an interesting future work.

C. Rx and Tx Services

In our design, packet I/O is handled by Rx and Tx services
in order to hide hardware specifics from the other µNFs. In our
prototype implementation, the Rx service runs as a separate
thread inside the agent and is pinned to a physical CPU core
on the same socket where the NIC’s PCIe bus is attached. It
receives packets from a NIC queue in batches and implements
a classifier that dispatches the packets to the appropriate µNFs.
Currently, the classifier is based on matching the following
5-tuple flow signature: (source-IP, dest-IP, ip-proto, src-port,
dst-port).

The Tx service abstracts the NIC Tx queues and imple-
ments common functions frequently required by the µNFs.
For example, in a multi-node deployment scenario, when a
µNF processing graph is deployed across multiple machines,
the Tx service encapsulates the packets belonging to a µNF
graph destined to another machine in a custom layer 2 tunnel
with appropriate tag and destination MAC addresses. The Rx
service on the other end of the tunnel distributes packets to the
appropriate µNFs based on the tags. These tags are determined
and configured by the orchestrator.

D. Port

As discussed earlier, a port provides packet I/O abstraction
for µNFs and decouples the implementation of a specific
communication pattern from a µNF’s packet processing logic.
This design choice helps to keep the µNF implementation
focused only on the packet processing part. We have two
broad classes of ports, IngressPort for receiving packets

(a) Point-to-Point Port

(b) Branched Egress Port

Fig. 4. Port Implementations

from and EgressPort for sending packets to µNF(s). If not
stated otherwise, ports provide a zero-copy packet exchange
mechanism by exchanging the packet addresses instead of
full copies of the packets. IngressPort and EgressPort present
the following interfaces to the µNFs while hiding underlying
implementation details: (i) pull based IngressPort::RxBurst,
which populates an array with a burst of packet addresses; (ii)
EgressPort::TxBurst pushes a burst of packets to the next µNF.
Currently, we have the following specific implementations of
IngressPort and EgressPort that allow different communication
patterns between µNFs.

1) NIC I/O Port: A NIC I/O port abstracts the rx/tx queues
in the hardware NIC. It allows µNFs to directly read from or
write to the NIC. We have leveraged the NIC specific DPDK
poll mode drivers (PMDs) for implementing ingress and egress
versions of NIC I/O Port. The DPDK PMDs bypass the OS
kernel and allow zero copy packet I/O from the NIC.

2) Point-to-Point Port: A point-to-point port allows a µNF
to push packets to or pull packets from exactly one other
µNF. We have implemented this port using a circular queue
(Fig. 4(a)). The ingress version of the port (PPIngressPort)
pulls a batch of packet addresses from a circular queue and
the egress version (PPEgressPort) pushes packet addresses for
a batch of packets to the queue. When a µNF’s PPIngressPort
and another µNF’s PPEgressPort share the same circular
queue, they can exchange packets with each other. The circular
queue in our implementation is an instance of rte ring data
structure (a lock-less multi-producer multi-consumer circular
queue) from DPDK librte ring library.

3) BranchEgressPort: This port connects a µNF to multiple
µNFs that are processing packets in parallel. For instance,
in Fig. 4(b), µNFB and µNFC are executing in parallel. To
realize this execution model, µNFA can be made aware of this
configuration and pushes packet addresses to both of the next
state µNFs. µNFA will also need to embed the necessary meta-
data in packets to mark the completion of µNFB and µNFC .
This violates our design principle of loose coupling between
µNFs, and therefore, we developed BranchEgressPort to trans-

parently handle this type of branching. A BranchEgressPort
contains multiple circular queues, each corresponding to one
µNF in the next stage. Each of the circular queues can
be shared with a PPIngressPort to create a communication
channel. For example, one of the circular queues of µNFA’s
BranchEgressPort is essentially the underlying circular queue
of µNFB’s PPIngressPort. A BranchEgressPort also initializes
and embeds a counter inside each packet’s meta-data area,
which is used to mark the completion of packet processing by
all parallel µNFs.

4) MarkerEgressPort: A MarkerEgressPort works in con-
junction with a BranchEgressPort. It is the typical EgressPort
of a µNF part of a parallel processing group. This port atom-
ically increases the embedded counter in the packet before
putting the packet into a shared circular queue.

5) SyncIngressPort: A SyncIngressPort connects a set of
parallel µNFs to a single µNF that is potentially modifying
packets. This port is also an abstraction over a shared circular
queue. The queue is shared with other MarkerEgressPorts in
the parallel processing group. SyncIngressPort ensures that any
packet that is pulled out has been processed by all the parallel
µNFs. This synchronization is done by atomically checking the
counter embedded inside every packet by a BranchEgressPort.
SyncIngressPort pulls a packet only if the counter value equals
the number of µNFs in the parallel processing stage. In this
way, the next stage of a parallel processing stage proceeds
to process a packet only after all the µNFs from the parallel
processing stage have completed their processing. Note that
in order to keep the cost of atomically updating and checking
the embedded counters, we leverage the atomic instruction set
of modern CPUs.

6) LoadBalancedEgressPort: This is an EgressPort that
load balances packets pushed by a µNF to a number of next
stage µNFs. This port is particularly useful when µNFs are
scaled-out. Consider two µNFs a and b, connected with a
pair of ingress and egress point-to-point ports. If b is scaled
out then packets from a need to be load balanced across b
instances. This port transparently performs this load balancing.
Our current implementation has a round-robin load balancing
policy. However, more complex policies (e.g., ensuring flow
affinity) can also be implemented using this abstraction.

E. µNF Scheduling
In order to increase µNF density per physical machine, we

share a CPU core between multiple consecutive µNFs from
a µNF processing graph. This also enables these consecutive
µNFs to better utilize a CPU’s warm first level cache. How-
ever, like many other DPDK applications, µNFs operate in
busy polling mode. Therefore, it can occur that one µNF out
of several others sharing the same CPU core, gets scheduled
on that core, and there is no packet at that moment to process.
This will waste CPU cycles during the time allocated for the
µNF. Therefore, a major challenge here is to carefully schedule
µNFs to minimize the wasted CPU cycles. This is a problem
of its own and merits separate investigation as seen in the
literature [48]. For our prototype implementation, we aim to
have a simple yet effective solution and first explore which
out of the box OS scheduler is the most suitable one.

 3

 6

 9

 12

 15

2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t
(M

p
p
s
)

Length of µNF Chain Sharing a Core

CFS-Y RT-FIFO-Y RT-RR-Y

(a) Impact of scheduler and scheduling pol-
icy on µNF chains (sharing same CPU core)

 0
 1
 2
 3
 4

C
F

S
-Y

R
T
-F

IF
O

-Y

R
T
-R

R
-YM

a
x
.

L
e

n
.

o
f
µ

N
F

 C
h

a
in

 o
n

 1
 C

o
re

Scheduling Policy

(b) Max. length of a µNF chain
able to sustain line rate (64B)
while sharing a core

Fig. 5. Impact of Different Scheduling Schemes

Completely Fair Scheduler (CFS) is the default scheduler in
most Linux distributions [49]. CFS ensures fair sharing of a
CPU between competing processes by periodically preempting
them. However, there are other schedulers available in the
kernel, e.g., the Real Time (RT) scheduler [50]. RT scheduler
supports the following two scheduling policies: First-in-First-
out (FIFO) and Round Robin (RR). Unlike CFS, RT scheduler
does not ensure fairness, rather it ensures that a process only
releases a CPU after it has finished (FIFO) or its allocated
time quantum has expired (RR). To better understand which
scheduler and scheduling policy is a best fit, we performed
the following experimental study.

We deployed µNF chains of varying lengths on a single
CPU core, where each µNF performs very minimal packet
processing (swaps source and destination MAC addresses).
We measured the throughput of these chains for smallest size
(64 byte) packets using different scheduler and policy com-
binations, namely CFS, RT with FIFO, and RT with RR. We
observed that CFS was preempting the µNFs too frequently.
As a consequence, there was a significant context switching
overhead and µNFs from the chain were being scheduled
when there was no packet available in their IngressPorts. RT
scheduling was not performing well either since µNFs were
getting uneven CPU time and were starving. We observed a
throughput of only a few thousand packets per second.

Therefore, we added the following optimization in the
µNFs. A µNF voluntarily yields CPU in the following events:
(i) when there are no packets available in its IngressPort to
process, and (ii) after successfully processing k batches of
packets. This optimization (voluntary yielding) improved the
throughput by three orders of magnitude. We present results
for different scheduler and scheduling policies with voluntary
yielding optimization in Fig. 5.

Fig. 5(b) shows the maximum length of a µNF chain that
can be deployed on a CPU core while maintaining 10Gbps
line rate throughput for 64B packets (≈14.88 Mpps). We
found that voluntary yielding with RT scheduling and FIFO
policy can support the maximum number of chained µNFs
while operating at line rate. In Fig. 5(a) we demonstrate
the throughput for µNF chains of varying lengths sharing a
single CPU core for different combinations of scheduler and
policy. From our empirical evaluation, it is clear that the best
combination to use is voluntary yielding with RT scheduler

and FIFO policy, which is able to sustain higher throughput for
any chain length compared to any of the other combinations.
The reason being, CFS preempts a process as soon as its
allocated time quantum expires. Therefore, CFS can preempt a
µNF in the middle of processing a batch, making it less likely
for the next scheduled µNF to get packets from its IngressPort,
thus wasting CPU cycles. RT with FIFO mitigates the impact
of preempting. By combining voluntary yielding, we prevent
other µNFs from starving.

VII. PERFORMANCE EVALUATION

A. Experiment Setup

1) Hardware Configuration: Our testbed consists of two
machines connected back-to-back without any switch. One
of them hosts the traffic generator, while the other hosts
the µNFs. Each machine is equipped with 2×6-core Intel
Xeon E5-2620 v2 2.1 Ghz CPU (hyper-threading disabled),
32 GB memory (distributed evenly between two sockets), and
a DPDK compatible Intel X710-DA 10 Gbps NIC.

2) Software Environment: We used DPDK v17.05 on
Ubuntu 16.04LTS (kernel version 4.10.0-42-generic). We dis-
abled Address Space Layout Randomization (ASLR) to ensure
a consistent hugepage mapping across the µNFs. We also
allocated a total of 4GB hugepages (evenly divided between
sockets). Additionally, we configured the machines with the
following performance improvement features:

• We isolated all CPU cores except core 0 on socket 0 from
the kernel scheduler. µNF processes and agent threads
were pinned to these isolated CPUs.

• CPU scaling governor was set to performance.
• Flow control in the NIC was disabled.
3) Prototype µNFs: We developed the following µNFs and

used them for different scenarios:
• MacSwapper: Swaps the source and destination MAC

address of each packet.
• IPTtlDecrementer: Parses IP header and decrements

time-to-live (TTL) field by 1.
• CheckIPHeader: Computes and checks the correctness

of IP checksum of each packet.
• L3L4Filter: Filters packets based on Layer 3-4 signature.
• HttpClassifier: Determines if a packet is carrying HTTP

traffic by checking the payload.
• ValidateUrl: Performs a regular expression matching on

URL in HTTP header to detect URLs containing SQL
injection attacks.

• CountUrl: Counts the number of packets in a batch that
contains a certain URL in its payload.

4) Traffic Generation: We used pktgen-dpdk [51], and
Moongen [52] for throughput and latency measurements, re-
spectively. We determine the physical limits of our setup by
modifying the agent to receive batches of packets and echo
them back (single thread pinned on a CPU core). We observed
line rate throughput from this setup (i.e., 10 Gbps for all packet
sizes), hence, there are no bottlenecks present in the hardware
or configuration. For latency measurements, we set the packet
rate to 90% of maximum sustainable rate for that particular
deployment scenario.

B. Microbenchmarks

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

64 96 128 256 512 768 1024 1500

 0

 2

 4

 6

 8

 10

 12

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Packet size (Bytes)

Throughput (Mpps) Throughput (Gbps)

1
4

.8
7

1
0

.7
7

8
.4

5

4
.5

3

2
.3

5

1
.5

9

1
.2

0
.8

2

9
.9

9

1
0

1
0

1
0

1
0

1
0

1
0

1
0

Fig. 6. Baseline Performance

1) Baseline Performance of µNF: We first establish the
baseline performance that can be achieved by disaggregating
larger VNFs into µNFs. We pinned the agent’s Rx thread to a
CPU core and run a very simple µNF (MacSwapper) pinned
to a different CPU core in the same NUMA zone. We vary
packet size from 64 to 1500 Bytes and report the throughput in
Fig. 6. Throughput reaches line rate for smallest packet size on
10 Gbps NIC. We also deployed the same µNF inside a Docker
container and performed the same experiment to observe any
potential impact of containerization. Throughput results for
containerized µNF are very similar to those presented in Fig. 6,
and are hence not presented.

2) Impact of Pipelined Cache Pre-fetching: We intend to
utilize all available CPU cores on a machine for deploying
the µNFs. However, in a NUMA system with multiple CPU
sockets, processing packets on a NUMA zone other than the
one where the packet was received can cause performance
degradation due to remote memory access overhead [53]. In
this experiment, we evaluate the impact of cache pre-fetching
optimization from Section V-B when packets are processed by
µNFs on different NUMA nodes.

We receive packets on NUMA zone 0 and process them
through a chain of two MacSwapper µNFs deployed on
separate cores at NUMA zone 1. We measure throughput of
this chain (for smallest size packets) while varying the number
of pipelined pre-fetched packets up to 50% of packet batch
size (batch size is set to 64). The results are shown in Fig. 7.
With pre-fetching disabled throughput drops to ≈30% of line
rate. However, with as little as ≈20% packets pre-fetched to
cache in a pipeline (8 out of 64 packets in a batch), throughput

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35 40 45 50

 50

 100

 150

 200

 250

T
h
ro

u
g
h
p
u
t
(M

p
p
s
)

T
h
ro

u
g
h
p
u
t
Im

p
ro

ve
n
t

O
ve

r
N

o
 P

re
-f

e
tc

h
in

g
 (

%
)

Prefetch Size (% of Batch Size)

Throughput Improvement (%)

Throughput (Mpps)

Fig. 7. Impact of Pipelined Cache Pre-fetching

improves by more than ≈3× and goes back to the line rate
for smallest packet size.

 0

 50

 100

 150

 200

0 100 200 300 400 500 600 700

M
e

a
n

 P
ro

c
e

s
s
in

g
 L

a
te

n
c
y
 (
µ

s
)

Per µNF Complexity (CPU cycles/packet)

Parallel Sequential

Fig. 8. Impact of Parallelism in Processing Graph

3) Impact of Parallelism in µNF Processing Graph:
Intuitively, parallel execution of µNFs in the processing
graph is expected to reduce the processing latency for the
packets through µNF processing graph. However, overheads
are associated with parallel executions because of atomically
increasing a counter on each packet during branching and
synchronizing as described in Section V-B. Depending on how
fast a µNF is processing packets, we may observe different
impacts of parallelism. To evaluate the effect of parallelism
for different packet processing costs, we add an artificial busy
loop after processing each packet in MacSwapper µNF. We
create a pipeline from four of these µNFs connected linearly
for the sequential case. For the parallel case, we create a two-
way branching after the first µNF (using BranchEgressPort)
and join the branches at the last µNF (using SyncIngressPort).
We vary the per packet processing cost from 100 to 700 CPU
cycles. We measure packet processing latency of the sequential
and parallel configurations using Moongen.

Results of this experiment (mean latency with 5th and 95th
percentile error bars) are shown in Fig. 8. When a µNF’s
processing cost is low (e.g., less than 100 cycles/packet), the
gains from parallelism are rather marginal compared to the
sequential case (less than 10% improvement in latency). The
gains become more evident when µNFs’ packet processing
cost increases and we see a good potential for improving
latency there (more than 20% for µNFs with 700 CPU cycles
per packet processing cost).

4) Impact of µNF Processing Graph Diameter: We create
µNF chains of different lengths (varied from 4 to 6) and
measure packet processing latency along the pipeline using
Moongen. The objective is to observe if packets start queuing
up in any stage of the processing pipeline or not. We have an
experiment setup similar to the scenario in Section VII-B3. We
first measure latency with varying chain lengths and without
introducing any additional packet processing complexity in our
MacSwapper µNF. In this case, we observe a linear increase
in mean latency (Fig. 9(a)). Then we introduce additional
busy loops to emulate CPU cycles spent for packet processing
(similar to Section VII-B3) and measure latency for differ-
ent lengths of µNF packet processing path. As we observe
from Fig. 9(b), latency increases linearly with µNF complexity
as well as with µNF processing path length. Therefore, no
buffering issues were encountered along the pipeline.

 0

 3

 6

 9

 12

 15

 18

 0 1 2 3 4 5 6 7 8

L
a

te
n

c
y
 (
µ

s
)

Processing Path Length

(a) Latency as a Function of Chain
Length

 0

 50

 100

 150

 200

 250

 300

 0

 1
0

0

 2
0

0

 3
0

0

 4
0

0

 5
0

0

 6
0

0

 7
0

0

L
a

te
n

c
y
 (
µ

s
)

µNF Complexity (Cycles/pkt)

Len. = 4

Len. = 5

Len. = 6

(b) Latency as a Function of Packet
Processing Cost

Fig. 9. Impact of µNF Processing Path Length

C. Service Level Performance

1) Resource Efficiency over Run-to-Completion Mode:
We compare µNF with NetBricks [23], the state-of-the-art
in software packet processing platform operating in run-to-
completion model. In particular, we perform the same ex-
periment as in [23] to reproduce results from Fig. 7 of the
original paper [23]. We developed similar packet processing
element using µNF (IPTtlDecrementer) as the one used in [23]
and deployed chains of different length in the following
configurations: (i) NB-MC: NetBricks with multiple threads,
each pinned to a dedicated CPU core, (ii) NB-1C: NetBricks
with single thread, (iii) µNF-1C: all µNFs packed on a single
CPU core, and (iv) µNF-MC: the chain is divided into k
clusters of consecutive µNFs such that each cluster packs
maximum number of µNFs to sustain line rate while sharing
a CPU core. For a fair comparison, for both NetBricks and
µNF we read packets from NIC without intervention from a
software switching layer. Note that in the original paper [23],
the authors spawned ℓ threads for a chain of length ℓ in NB-
MC configuration and were able to reach more than 10Gbps
throughput. However, we do not have similar hardware in
our disposal at this moment, hence, for each chain length,
we deploy the minimum number of threads on distinct CPUs
until NetBricks reaches line rate for smallest packets. We also
performed the suggested performance tuning as in [23], [54].

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7 8

 0

 2

 4

 6

 8

 10

 12

T
h
ro

u
g
h
p
u
t
(M

p
p
s
)

N
u
m

b
e
r

o
f
C

o
re

s
 U

s
e
d

Chain Length

NB-MC-Perf

µNF-MC-Perf

NB-1C-Perf

µNF-1C-Perf

NB-MC-Cores

µNF-Cores

Fig. 10. Comparison with NetBricks [23]

The results from this experiment are shown in Fig. 10.
For the single CPU core scenario (i.e., NB-1C and µNF-

1C), µNF achieves better throughput than that of NetBricks
with increasing chain length. Because of operating in a run-to-
completion mode, NetBricks starts processing a new batch of
packets only after the previous batch has finished processing
through all the elements in the chain. In contrast, because of its
pipeline mode, µNF can schedule a packet processing element
to work on a new batch of packets as soon as that element
has finished processing the previous batch and hands it over
to the next element in the chain. This effectively increases the
number of packets in the pipeline, resulting in a better packet
processing throughput compared to NetBricks as demonstrated
in Fig. 10. Indeed, there is context switching overhead involved
in a pipeline mode. However, by carefully yielding the CPU
as discussed in Section VI-E, µNF minimizes the impact of
such overhead on packet processing throughput.

We also observe from Fig. 10 that for a given chain length,
µNF can reach line rate using lesser number of CPU cores
compared to NetBricks. This is because, in pipeline mode
with appropriate scheduling, it is possible to reduce wastage of
CPU cycles and use the CPUs more effectively between packet
processing stages, compared to run-to-completion mode. How-
ever, to be fair in the comparison, NetBricks provides packet
ownership transfer by using underlying compiler features,
which is not provided by µNF. Another caveat in the result
is that, when we used more than 5 cores for NetBricks, the
packets crossed a NUMA zone, which caused some perfor-
mance penalty as we can see from the non-linear core scaling
for longer chains.

Fig. 11. µNF Realization of the SFC from Fig. 2(a)

2) Performance of µNF-based SFC: We have developed
a set of µNFs (described in Section VII-A3) for realizing
realistic VNFs and SFCs. We use these µNFs to deploy the
SFC used for the motivational experiment in Section II, i.e.,
Firewall → Monitor → Application Firewall. The resulting
µNF processing graph is shown in Fig. 11. We implemented
each individual µNF as close as possible to their Click
counterpart. We played the same traffic trace used in Section II.
Results in Table II show the relative savings in mean CPU
cycles per packet when using µNF processing graph over
monolithic VNFs (i.e., configuration-(i) from Section II). To
be fair, we did not compare packet I/O from NIC since it is
fundamentally different between µNF and Click. We counted
the cycles spent in reading to/from ring-based shared memory
since that is an added overhead in this disaggregated archi-
tecture. We also benchmarked the deployment from Fig. 11
using pktgen. We set the packet size to 200 bytes, the average
packet size reported in a recent study on a production data
center [55]. Throughput reached 2.08 Mpps or 3.67 Gbps. We
identified the HttpClassifier µNF to be a bottleneck through a
separate benchmark. To test the scaling out of individual µNFs

and LoadBalancedEgressPort, we deployed the same SFC but
with two instances of HttpClassifier. We observed a near linear
increase in throughput, which is 4.1 Mpps or 7.2 Gbps.

TABLE II
CPU CYCLES SAVED PER-PACKET ON AVERAGE

Click Element CPU Cycles Element Weight in
Type/µNF Saved in µNF configuration-(i)

CheckIPHeader 27.8% 0.44%
HttpClassifier 28.9% 47.8%

Overall 16.8% –

VIII. DISCUSSION

Decomposition of Monolithic VNFs into µNFs: In this
paper, we proposed a system to compose SFCs and VNFs from
independently deployable loosely-coupled µNFs. Orthogonal
to the system design is the identification of the set of µNFs
in the first place. From our initial survey this appears to
be rather challenging primarily because it requires domain
specific knowledge. Also determining the granularity of such
tasks is also non-trivial. On one hand, most of the academic
works propose low level packet processing functions (e.g.,
TCP processing functions [25]) as VNF building blocks.
On the other hand, state-of-the-art commercial VNFs [56]
are composed from coarser-grained building blocks. Finer
granularity increases re-usability whereas coarser granularity
reduces overhead. The best way to decompose a VNF into
µNFs remains an interesting research question.

Packet Ownership Transfer: When a µNF is finished
processing a packet and transfers it to another µNF, the
ownership of the packet should be transferred to that other
µNF as well, i.e., the previous µNF should not be able
to access the packet content using the previously acquired
packet handler. Virtual switches provide this abstraction by
copying packets between ports, so, the previous copy becomes
invalidated. However, this is a difficult problem to solve using
a shared memory subsystem. In our implementation, µNFs
rely on the hugetlbfs to obtain virtual-to-physical memory
translation of the packet addresses. This file system should
be accessible to the µNFs to ensure that they can always
obtain a valid translation. This requirement also raises the
issue that µNFs can always read packet content even after the
packet has been transferred to other µNFs, and consequently,
ownership is not transferred. Ownership transfer between
multiple processes has been studied in HPC systems [57].
However, the state-of-the-art in that area still performs at least
one message copy, which in our case would add a significant
latency in packet processing. Ownership transfer in shared-
memory multi-process system with zero-copy remains an open
question. As a workaround in our implementation we create
disjoint segments in the huge table area and assign one area to
µNFs of the same processing graph. This does not solve the
problem 100%, however, it provides isolation between µNFs
from different processing graphs.

Future Work: In this paper, our design and implementation
was primarily focused on developing a working solution and
addressing the engineering challenges for enabling VNF and

SFC composition from independently deployable µNFs while
operating at line rate. We also focused our evaluation on
whether our prototype system is able to deliver its promise, i.e.,
provide better resource utilization by eliminating redundancies
and finer grained resource allocation. However, to get the best
out of such architecture there are other interesting research
questions that we have not addressed in this paper. These
include µNF graph optimization to incorporate parallelization
and consolidation of µNF instances, optimal placement of µNF
graph across multiple machines, scaling out µNF instances
across multiple machines, state management between scaled
out instances, fault-tolerance, and scheduling of µNF instances
for better resource utilization among others. Some of these
problems may be of interest to the broader research commu-
nity. For our part, we plan to improve our current system by
addressing some of the aforementioned problems in the future.

IX. RELATED WORKS

A. Modular Packet Processing

The development of modular packet processing software has
a long history that dates back to the late 90s. Click [30],
one of the most influential works in this area proposed to
build monolithic packet processing software using reusable
packet processing components called elements. Click’s focus
was more on the programmability than performance. Over
the years, Click influenced a significant body of subsequent
research on building modular yet high performance packet
processing platforms that employed different optimization
techniques of their own (e.g., NIC offloading, I/O batching,
kernel bypass, etc.) to improve packet processing performance
and add flexibility to VNF composition [20], [23], [58],
[59]. However, these are centered around the assumption
that a middlebox is a monolithic software. mOS proposed
to abstract layer 4-7 packet processing tasks into modular
and high-performance libraries for the ease of middlebox
development [60]. mOS is complimentary to our work on
disaggregating VNFs and can facilitate µNF development.

More recently, Slick [22] and OpenBox [24] proposed
different approaches to achieve a similar goal of building
packet processing from independently deployable components.
Slick focuses more on the programming model for middle-
box composition while OpenBox goes one step further and
decouples data and control planes of VNFs. In contrast to
µNF, OpenBox does not focus on addressing the engineering
challenges pertaining to realizing a data plane for modular
VNFs and SFCs. Its focus is more on the control aspects
such as designing a protocol between VNF control and data
planes, optimizing the forwarding graph, etc. OpenBox can
complement our proposed system by acting as a control and
orchestration layer above µNFs.

A chaining mechanism for lightweight VNFs has been pro-
posed in [61], which inserts per-VM SFCs between a VM and
a virtual switch for providing QoS, security, and monitoring
services. In contrast, our focus is not on per-VM services,
rather, on a general software architecture for realizing VNFs
and SFCs from lightweight, independently deployable, and
loosely-coupled packet processing components. An elaborate

discussion on the challenges associated with realizing such
microservice-based VNFs and SFCs can be found in [29]. An
area of research orthogonal to modular and lightweight packet
processing is runtime systems built around unikernels [62].
Unikernels are minimalistic OSs that are custom made to
run only a single application, thus losing the benefit of
being general purpose OSs. However, they have very low
memory footprint (a few megabytes) and high deployment
density (order of hundreds per physical machine) compared
to traditional VMs or containers [20], [63], hence, can be a
potential choice for µNF deployment.

B. Industry Efforts in Microservice-based VNFs

There has been some movement in the industry for re-
designing large VNFs using microservice architecture. As part
of the CORD project [37], a number of VNFs have been
decomposed into having separate control and data planes that
are loosely coupled and can be independently scaled. Another
example is the Clearwater IP Multimedia System [56] re-
architected using microservices design principle and also made
available as an open-source software. However, the indepen-
dently deployable components themselves are rather complex
and can be further decomposed into more manageable sizes.
The availability of Clearwater as an open-source software has
also fostered academic research, including on enhancing its
auto-scaling capabilities [64], [65], and service latency and
failure recovery time [66].

C. Middlebox Functionality Consolidation

CoMb [27] is one of the early works to experimentally
motivate the consolidation of common functionality into sepa-
rate services and share them across VNFs. However, CoMb’s
main focus was not to address the implementation issues
related to realizing such a system, rather demonstrate the
advantage of consolidating multiple NFs on commodity hard-
ware as opposed to using purpose-built hardware middleboxes.
E2 [10] proposed to consolidate management tasks such as
resource allocation, fault-tolerance, monitoring, auto-scaling,
etc., into a single framework, which is orthogonal to µNF
or CoMb’s objective. More recently, Microboxes proposed
to consolidate TCP protocol processing functions (e.g., TCP
bytestream reconstruction, TCP endpoint termination, etc.) of
multiple middleboxes [25]. Consolidation has the advantage
of reducing redundant development efforts in implementing
and optimizing common tasks. In this paper, we focus on the
engineering efforts related to software architecture, necessary
abstractions, and performance optimizations for realizing such
a disaggregated packet processing platform, facilitating better
consolidate of packet processing tasks with ease.

X. CONCLUSION

In this paper, we propose µNF, a system for building
VNFs and SFCs from reusable, independently deployable, and
loosely-coupled components enabling finer-grained resource
allocation. Our design goal is to keep the µNFs simple
and develop the necessary primitives to transparently enable

different communication patterns between them. We demon-
strated the effectiveness of our system through a DPDK based
prototype implementation and experimental evaluation. The
individual techniques used for implementing and optimizing
the system are not entirely new (e.g., batched I/O, zero-copy
I/O, pre-fetching, etc.). However, the bigger picture here is
to demonstrate that disaggregating complex VNFs using the
proposed software architecture combined with the individual
techniques is indeed a viable and competitive solution for
composing VNFs and SFCs. This is further supported by our
experimental evaluation showing that the combined engineer-
ing effort enables finer-grained resource allocation and scaling
while attaining comparable performance compared to the state-
of-the-art monolithic implementations.

REFERENCES

[1] S. R. Chowdhury, Anthony, H. Bian, T. Bai, and R. Boutaba, “µNF: A
disaggregated packet processing architecture,” in Proc. of IEEE NetSoft,
2019, pp. 342–350.

[2] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and issues,” RFC
3234, February 2002.

[3] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” ACM SIGCOMM Computer Comm. Rev.,
vol. 42, no. 4, pp. 13–24, 2012.

[4] “Network Functions Virtualisation – Introductory White Paper,” White
paper, Oct 2012, accessed: Apr 05, 2017. [Online]. Available:
https://portal.etsi.org/nfv/nfv white paper.pdf

[5] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 236–262, 2016.

[6] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[7] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark:
securely outsourcing middleboxes to the cloud,” in Proc. of USENIX
NSDI, 2016, pp. 255–273.

[8] “Open platform for nfv (OPNFV),” accessed: Apr 09, 2017. [Online].
Available: https://www.opnfv.org/

[9] “Open source MANO,” accessed: Apr 09, 2017. [Online]. Available:
https://osm.etsi.org/

[10] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: a framework for nfv applications,” in Proc. of ACM
SOSP, 2015, pp. 121–136.

[11] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. a. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker,
“Rollback-recovery for middleboxes,” in Proc. of ACM SIGCOMM,
2015, pp. 227–240.

[12] Y. Kanizo, O. Rottenstreich, I. Segall, and J. Yallouz, “Optimizing virtual
backup allocation for middleboxes,” in Proc. of IEEE ICNP, 2016, pp.
1–10.

[13] S. G. Kulkarni, G. Liu, K. Ramakrishnan, M. Arumaithurai, T. Wood,
and X. Fu, “REINFORCE: achieving efficient failure resiliency for net-
work function virtualization based services,” in Proc. of ACM CoNeXT,
2018, pp. 41–53.

[14] J. Duan, X. Yi, S. Zhao, C. Wu, H. Cui, and F. Le, “NFVactor: A
resilient nfv system using the distributed actor model,” IEEE Journal
on Sel. Areas in Comm., vol. 37, no. 3, pp. 586–599, 2019.

[15] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes.” in Proc. of USENIX NSDI, 2013, pp. 227–240.

[16] A. G. Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling innovation in network
function control,” in Proc. of ACM SIGCOMM, 2014, pp. 163–174.

[17] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in Proc.
of USENIX NSDI, 2017, pp. 97–112.

[18] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in Proc. of USENIX
NSDI, 2018, pp. 299–312.

[19] H. Hantouti, N. Benamar, T. Taleb, and A. Laghrissi, “Traffic steering for
service function chaining,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 1, pp. 487–507, First quarter 2019.

[20] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the art of network function virtualization,”
in Proc. of USENIX NSDI, 2014, pp. 459–473.

[21] J. Hwang, K. K. Ramakrishnan, and T. Wood, “Netvm: High per-
formance and flexible networking using virtualization on commodity
platforms,” in Proc. of USENIX NSDI, 2014, pp. 445–458.

[22] B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming slick
network functions,” in Proc. of ACM SOSR, 2015, pp. 14:1–14:13.

[23] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the V out of NFV,” in Proc. of USENIX OSDI, 2016,
pp. 203–216.

[24] A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: A software-defined
framework for developing, deploying, and managing network functions,”
in Proc. of ACM SIGCOMM, 2016, pp. 511–524.

[25] G. Liu, Y. Ren, M. Yurchenko, K. Ramakrishnan, and T. Wood,
“Microboxes: high performance nfv with customizable, asynchronous
tcp stacks and dynamic subscriptions,” in Proc. of ACM SIGCOMM,
2018, pp. 504–517.

[26] J. Duan, X. Yi, J. Wang, C. Wu, and F. Le, “Netstar: A future/promise
framework for asynchronous network functions,” IEEE Journal on Sel.
Areas in Comm., vol. 37, no. 3, pp. 600–612, 2019.

[27] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” in Proc. of
USENIX NSDI, 2012, pp. 323–336.

[28] Surendra, M. Tufail, S. Majee, C. Captari, and S. Homma, “Service
function chaining use cases in data centers,” IETF Secretariat, Internet-
Draft draft-ietf-sfc-dc-use-cases-06, February 2017.

[29] S. R. Chowdhury, M. A. Salahuddin, N. Limam, and R. Boutaba, “Re-
architecting NFV ecosystem with microservices: State of the art and
research challenges,” IEEE Network, vol. 33, no. 3, pp. 168–176, 2019.

[30] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” ACM SIGOPS Operating Systems Review, vol. 33, no. 5,
pp. 217–231, 1999.

[31] M. Gallo and R. Laufer, “ClickNF: a modular stack for custom network
functions,” in Proc. of USENIX ATC, 2018, pp. 745–757.

[32] “Blue coat® systems proxysg™,” Tech. Rep., accessed: Apr 09,
2017. [Online]. Available: https://bto.bluecoat.com/sites/default/files/
tech pubs/SGOS 4.3.1 Upgrade Downgrade.pdf

[33] “Barracuda web application firewall,” accessed: Apr 09, 2017. [Online].
Available: https://www.barracuda.com/products/webapplicationfirewall

[34] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” in Present and Ulterior Software Engineering. Springer, 2017,
pp. 195–216.

[35] C. Dumitrescu, “Design patterns for packet processing applications on
multi-core intel architecture processors.” White Paper, December 2008.

[36] “Receiver side scaling,” accessed: Apr 09, 2018. [Online]. Available:
https://www.kernel.org/doc/Documentation/networking/scaling.txt

[37] L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das,
J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a
data center,” IEEE Communications Magazine, vol. 54, no. 10, pp. 96–
101, 2016.

[38] R. S. Montero, E. Rojas, A. A. Carrillo, and I. M. Llorente, “Extending
the cloud to the network edge.” IEEE Computer, vol. 50, no. 4, pp.
91–95, 2017.

[39] “TOSCA Simple Profile for Network Functions Virtualization (NFV)
Version 1.0,” Committee Specification Draft 03, Mar 2014, accessed:
Apr 09, 2017. [Online]. Available: https://docs.oasis-open.org/tosca/
tosca-nfv/v1.0/csd03/tosca-nfv-v1.0-csd03.pdf

[40] R. Penno, P. Quinn, D. Zhou, and J. Li, “Yang data model for service
function chaining,” IETF Secretariat, Internet-Draft draft-penno-sfc-
yang-15, June 2016, accessed: Apr 09, 2017. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-penno-sfc-yang-15.txt

[41] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“SoftNIC: A software nic to augment hardware,” Dept. EECS, Univ.
California, Berkeley, USA, Tech. Rep. UCB/EECS-2015-155, 2015.

[42] “Network Functions Virtualisation (NFV); Management and
Orchestration ,” White paper, Dec 2014, accessed: Apr 09, 2017.
[Online]. Available: http://www.etsi.org/deliver/etsi gs/NFV-MAN/001
099/001/01.01.01 60/gs NFV-MAN001v010101p.pdf

[43] Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich, A. Shaikh,
and Z.-L. Zhang, “Parabox: Exploiting parallelism for virtual network
functions in service chaining,” in Proc. of ACM SOSR, 2017, pp. 143–
149.

[44] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “NFP: Enabling network
function parallelism in nfv,” in Proc. of ACM SIGCOMM, 2017, pp.
43–56.

[45] “Intel dpdk,” accessed: Apr 09, 2017. [Online]. Available: http:
//dpdk.org/

[46] “hugetlbfs documentation,” accessed: Apr 09, 2017. [Online]. Available:
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

[47] “Address space layout randomization,” accessed: Apr 09, 2018.
[Online]. Available: https://www.kernel.org/doc/html/v4.13/security/
self-protection.html

[48] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan,
T. Wood, M. Arumaithurai, and X. Fu, “NFVnice: Dynamic backpres-
sure and scheduling for nfv service chains,” in Proc. of ACM SIGCOMM,
2017, pp. 71–84.

[49] “CFS scheduler,” accessed: Apr 09, 2018. [Online]. Available: https:
//www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt

[50] “RT scheduler,” accessed: Apr 09, 2018. [Online]. Available:
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt

[51] “pktgen-dpdk,” accessed: Apr 09, 2017. [Online]. Available: http:
//git.dpdk.org/apps/pktgen-dpdk/

[52] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proc. of ACM
IMC, 2015, pp. 275–287.

[53] C. Sieber, R. Durner, M. Ehm, W. Kellerer, and P. Sharma, “Towards
optimal adaptation of nfv packet processing to modern cpu memory
architectures,” in Proc. of CAN Workshop, 2017, pp. 7–12.

[54] “Netbricks repository,” accessed: Jan 09, 2018. [Online]. Available:
https://github.com/NetSys/NetBricks

[55] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in ACM SIGCOMM Computer
Comm. Rev., vol. 45, no. 4. ACM, 2015, pp. 123–137.

[56] “Clearwater IMS,” Project documentation, 2018, accessed: Apr 09,
2019. [Online]. Available: https://media.readthedocs.org/pdf/clearwater/
latest/clearwater.pdf

[57] A. Friedley, T. Hoefler, G. Bronevetsky, A. Lumsdaine, and C.-C.
Ma, “Ownership passing: Efficient distributed memory programming on
multi-core systems,” ACM SIGPLAN Notices, vol. 48, no. 8, pp. 177–
186, 2013.

[58] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet process-
ing,” in Proc. of ACM/IEEE ANCS, 2015, pp. 5–16.

[59] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, “NBA (network
balancing act): a high-performance packet processing framework for
heterogeneous processors,” in Proc. of ACM EuroSys, 2015, pp. 22:1–
22:14.

[60] M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park, “mOS: A
reusable networking stack for flow monitoring middleboxes,” in Proc.
of USENIX NSDI, 2017, pp. 113–129.

[61] R. Kawashima and H. Matsuo, “A generic and efficient local service
function chaining framework for user VM-dedicated micro-VNFs,”
IEICE Transactions on Comm., vol. E100.B, pp. 2017–2026, 2017.

[62] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-
gnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library
operating systems for the cloud,” ACM SIGPLAN Notices, vol. 48, no. 4,
pp. 461–472, 2013.

[63] P. L. Ventre, P. Lungaroni, G. Siracusano, C. Pisa, F. Schmidt, F. Lom-
bardo, and S. Salsano, “On the fly orchestration of unikernels: Tuning
and performance evaluation of virtual infrastructure managers,” IEEE
Transactions on Cloud Computing, Early Access 2018.

[64] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba,
“Topology-aware prediction of virtual network function resource re-
quirements,” IEEE Transactions on Network and Service Management,
vol. 14, no. 1, pp. 106–120, 2017.

[65] J. Duan, C. Wu, F. Le, A. X. Liu, and Y. Peng, “Dynamic scaling
of virtualized, distributed service chains: A case study of IMS,” IEEE
Journal on Sel. Areas in Comm., vol. 35, no. 11, pp. 2501–2511, 2017.

[66] M. T. Raza, S. Lu, M. Gerla, and X. Li, “Refactoring network functions
modules to reduce latencies and improve fault tolerance in NFV,” IEEE
Journal on Sel. Areas in Comm., vol. 36, no. 10, pp. 2275–2287, 2018.

Shihabur Rahman Chowdhury (S’13) is a PhD
candidate at the David R. Cheriton School of Com-
puter Science, University of Waterloo. He received
his B.Sc. degree in computer science and engi-
neering from BUET in 2009. His research interests
include virtualization and softwarization of com-
puter networks. He is co-recipient of the Best Paper
Award at the IEEE/ACM/IFIP CNSM 2019, IEEE
NetSoft 2019, and IEEE/ACM/IFIP CNSM 2017
conferences.

Anthony is currently a software engineer with
Huawei Technologies Canada. He received MMath
degree in Computer Science from the University of
Waterloo, Canada in 2018 and Bachelor’s degree
in Computer Science from NCTU, Taiwan in 2015.
Anthony is a recipient of Mitacs Globalink Research
Award in 2018. His research interest includes net-
work softwarization and cloud computing.

Haibo Bian is currently a software engineer
at Bioinformatics Solutions Inc. He received the
MMath degree from the David R. Cheriton School of
Computer Science, University of Waterloo, Canada
and BSE degree from Zhejiang University, China in
2019 and 2016, respectively. His research interests
include network function virtualization, cybersecu-
rity, and machine learning.

Tim Bai is currently a software engineer with
Desire2Learn Canada. He received the MMath
and BMath degrees from the David R. Cheriton
School of Computer Science, University of Water-
loo, Canada in 2019 and 2017, respectively. His
current research interests include machine learning,
cybersecurity, and network softwarization.

Raouf Boutaba (F’12) received the M.Sc. and Ph.D.
degrees in computer science from the University
Pierre & Marie Curie, Paris, in 1990 and 1994,
respectively. He is currently a professor of computer
science and university research chair at the Univer-
sity of Waterloo and holds an INRIA International
Chair at INRIA Nancy. He is the founding editor
in chief of the IEEE Transactions on Network and
Service Management (2007–2010) and is in the
editorial board of many other journals. He is a fellow
of the Royal Society of Canada, the Institute of

Electrical and Electronics Engineers (IEEE), the Engineering Institute of
Canada, and the Canadian Academy of Engineering. His research interests
include resource and service management in networks and distributed systems.

