
502 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 3, MARCH 2018

Virtual Network Survivability Through Joint Spare
Capacity Allocation and Embedding

Nashid Shahriar, Student Member, IEEE, Shihabur Rahman Chowdhury, Student Member, IEEE, Reaz Ahmed,
Aimal Khan, Siavash Fathi, Raouf Boutaba, Fellow, IEEE, Jeebak Mitra, and Liu Liu

Abstract— A key challenge in network virtualization is to
efficiently map a virtual network (VN) on a substrate network
(SN), while accounting for possible substrate failures. This is
known as the survivable VN embedding (SVNE) problem. The
state-of-the-art literature has studied the SVNE problem from
infrastructure providers’ (InPs’) perspective, i.e., provisioning
backup resources in the SN. A rather unexplored solution
spectrum is to augment the VN with sufficient spare backup
capacity to survive substrate failures and embed the resulting
VN accordingly. Such augmentation enables InPs to offload
failure recovery decisions to the VN operator, thus providing
more flexible VN management. In this paper, we study the
problem of jointly optimizing spare capacity allocation in a
VN and embedding the VN to guarantee full bandwidth in the
presence of multiple substrate link failures. We formulate the
optimal solution to this problem as a quadratic integer program
that we transform into an integer linear program. We also
propose a heuristic algorithm to solve larger instances of the
problem. Based on analytical study and simulation, our key
findings are: 1) provisioning shared backup resources in the
VN can yield ∼33% more resource efficient embedding compared
to doing the same at the SN level and 2) our heuristic allocates
∼21% extra resources compared to the optimal, while executing
several orders of magnitude faster.

Index Terms— Network virtualization, survivability, virtual
network embedding, spare capacity, joint optimization.

I. INTRODUCTION

INFRASTRUCTURE providers (InPs), such as data center
network operators, Internet service providers, and trans-

port network operators are leveraging network virtualiza-
tion (NV) to offer slices of their networks to service providers
(SPs) [1], [2]. It enables InPs to better utilize their substrate
network (SN) and to open new revenue streams. More recently,
NV has been gaining further traction as one of the cornerstones
of 5G mobile networks [3], [4]. However, the benefits of
NV come with additional resource management challenges
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Fig. 1. Survivability at SN (W XY Z ) layer. Primary (or backup) embedding
of a virtual link is shown with thick (thin) lines. For example, virtual
link (a, b) has a primary and backup embedding of {(X, Y ), (Y, Z)} and
{(X, W ), (W, Z)}, respectively.

such as efficiently mapping the virtual nodes and links of
a virtual network (VN) request onto substrate nodes and
paths, respectively. This is known as the VN embedding
(VNE) problem [5]. If a VNE solution does not take possible
substrate failures into account, then such failures can result in
degraded quality of service (QoS) for VNs, leading to service
level agreement (SLA) violations. A VN embedding that can
survive substrate failures is known as the survivable VNE
(SVNE) [6], and has received significant attention from the
research community [7]–[15].

The SVNE research literature focuses primarily on
protection (i.e., pro-actively provisioning backup during
embedding) and restoration (i.e., reactively take action after
failure) methods [16]. In this paper, we focus on the former,
i.e., protection mechanism for SVNE, which is usually faster
than restoration approaches [17]. When a VN is embedded
with SN layer protection, it is the InP’s responsibility
to handle substrate resource failures. As an illustrative
example, consider the embedding of VN abc on SN
W XY Z with SN layer survivability in Fig. 1, where a, b, and
c are virtual nodes and W , X , Y , and Z are substrate nodes.
In Fig. 1, if the substrate link (X, Y ) fails, the InP needs to
reroute the affected traffic on the virtual link (a, b) to its
backup embedding in the SN, i.e., {(X, W ), (W, Z)}. A key
challenge in providing protection is to efficiently
utilize resources, since backup resources remain idle
until a failure has occurred. Protection based SVNE
approaches have adopted different techniques to increase
resource efficiency including dedicated backup capacity
allocation [14], [15], backup resource sharing [12], [13], [18],
multi-path embedding [10], [11], providing weaker forms of
survivability [9], and so on.

A rather unexplored spectrum in SVNE is to provide
protection at the VN layer, much like providing survivability
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Fig. 2. Survivability at VN (abc) layer. Backup path of a virtual link in
a VN is shown with a thin line having same dash pattern. For example,
virtual link (a, b) has a backup virtual path {(a, c), (c, b)} and an embedding
{(X, Y ), (Y, Z)}.

at the upper layer (e.g., Internet Protocol (IP)) of a multi-
layer network (e.g., IP over optical such as IP-over-Wavelength
Division Multiplexing (WDM) network) [19]–[21]. Fig. 2
shows a VN embedding with protection at the VN layer. With
this type of protection, InPs can offload some of the failure
management tasks to SPs by augmenting VNs with sufficient
spare capacity for backup and embedding the VNs in a way
that primary and backup VN resources are not affected by
the same substrate resource failure. When a substrate resource
fails, it is the SP’s responsibility to reroute the affected traffic
to the pre-allocated backup resources within the VN. For
example, in Fig. 2, when virtual link (a, b) is affected by the
failure of substrate link (X, Y ), the SP reroutes traffic between
a and b along the backup virtual path {(a, c), (b, c)}.

The motivation for providing survivability at the VN level
is to shift control to SPs, as anticipated in future Transport
Software Defined Networks (T-SDNs) [22]. T-SDNs are the
next generation of transport networks that leverage Software
Defined Networking (SDN) technologies and provide full
fledged Virtual Transport Networks (VTNs) instead of tradi-
tional end-to-end connectivity to SPs [2], [23]. In essence,
an SP can manage its VTN in the same way as managing
its own transport network, and can deploy its own routing,
traffic engineering, and failure management solutions [22].
Consequently, with VN layer survivability, the SP can offer
different classes of service with differing survivability guar-
antees to its customers [24]. For instance, the spare backup
capacity allocated to the VN of Fig. 2(a) can also be used
for carrying traffic of a service from best-effort protection
class during normal operation, while the same capacity can
be used to guarantee protection for a high priority service
when substrate resources fail. Such different classes of service
and utilization of resources could not be easily achieved in a
VN with SN level survivability, since the spare capacity at the
SN layer is usually transparent to the SP [25].

Another benefit of providing survivability at the VN layer is
that it yields more resource efficient embedding compared to
providing the same level of survivability at the SN layer [21].
The intuition behind such claim is that the former can offer
more opportunities for spare capacity sharing than the latter. In
the case of SN layer protection in Fig. 1(b), only the backup
capacity on the substrate link (Y, W ) can be shared among
the backup paths {(X, Y ), (Y, W )} and {(Z , Y ), (Y, W )} due
to higher path diversity. However, VN layer protection

in Fig. 2(a) can exploit lower path diversity in a VN to share
spare capacities allocated on all the virtual links with one
another. Although backup capacity sharing across different
VNs could increase the amount of sharing, such sharing is
restricted by the fact that virtual links from different VNs
may be embedded on different substrate paths to satisfy the
location constraints of virtual nodes. These substrate paths may
have small number of substrate links in common, resulting in
less opportunities of spare capacity sharing than the VN level
sharing. We also validate this claim later in our evaluation
(§ VI). Despite the backup sharing advantages, one can
argue that the increased number of signaling and rerouting
operations required for VN level survivability may lead to
slower restoration compared to ensuring survivability at the
SN layer. However, A recent study empirically evaluated the
impact of providing protection at the SN level, compared to
that at the VN level, on a real testbed [22]. The study shows
that: (i) both approaches have similar protection switching time
during a failure, and (ii) the latter can accommodate more VNs
than the former, thanks to its resource efficiency. InPs can thus
increase revenue by adopting VN level survivability without
severely impacting failure response times.

A major challenge in SVNE with VN level protection is
to jointly optimize spare backup capacity allocation in the
VN and survivable VN embedding on the SN. Spare capacity
allocation and survivable VN embedding have been studied
extensively as independent problems [16], [19], [26] and have
been proven to be NP-complete and NP-hard, respectively.
SVNE with VN level protection stresses the need to solve
these two problems simultaneously, since they can affect
each other. For example, an optimal spare capacity allocation
without considering VN embedding can be suboptimal, or may
even render the embedding infeasible. Similarly, an optimal
VN embedding without consideration for spare capacity allo-
cation may lead to suboptimal or even infeasible spare capacity
allocation later. The intricacy of the problem is exacerbated
by spare capacity sharing, which is an efficient technique for
minimizing aggregate spare capacity [12], [13], [18]. Spare
capacity sharing is possible as long as the virtual links, that
use the spare capacity as backup in the event of a substrate link
failure, are not impacted by the same substrate failure. This
requirement can impose constraints such as having a certain
number of disjoint paths for backup provisioning that, in turn,
can lead to increased embedding cost. Such path disjointedness
requirements can be alleviated by allocating dedicated spare
capacities instead of sharing the spare capacity. This can
also increase embedding cost. Therefore, there is a trade-
off between backup path selection and spare backup capacity
sharing in a VN and embedding of the VN with disjoint path
constraints. Striking a good balance between these choices is
challenging, and mandates a thorough investigation. Existing
schemes either do not consider all the subproblems of this joint
optimization, or address them in separate independent steps,
leading to suboptimal solutions [9], [19], [20], [22], [27].

In this paper, we study the joint optimization problem
discussed above with the objective of guaranteeing VN surviv-
ability under multiple substrate link failures and minimizing
resource usage in the SN. We start with single link failure
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scenario and then extend the solution to survive multiple link
failures. Specifically, we make the following contributions:
• We formulate a joint optimization model using a

Quadratic Integer Program (QIP) to optimally solve spare
capacity allocation and survivable VN embedding simul-
taneously. We transform the QIP into an Integer Linear
Program (ILP) without sacrificing its optimality. We pro-
vide ILP formulations for solving two extreme cases of
spare capacity sharing, one of which defines the upper
bound of the cost function. We present a mathematical
analysis that dictates how the topological properties of
the SN affect the level of spare capacity sharing.

• The ILP formulations for the joint optimization prob-
lem are not scalable to large problem instances. Hence,
we devise an efficient heuristic algorithm to tackle the
computational complexity of the ILP-based solutions.

• We perform simulations to evaluate our solutions for
single and double link failures. We restrict our evaluation
to one and two link failures since the probability of
more than two simultaneous link failures is extremely
low [28], [29]. We also compare shared backup protec-
tion at the VN level with the same at the SN layer
proposed in [13].

• We discuss the signaling mechanism and the enabling
technology to realize the protection at the VN layer.
We also discuss the flexibilities an SP can have by
leveraging the spare capacity on the virtual links of
a VN.

This work extends our initial paper presented in [30] on
several aspects. First, we extend our previous ILP formulation
and heuristic (Alg. 1-3) to handle multiple substrate link
failures in § IV-D and § V, respectively. We present ILP
formulations for two special cases of the joint optimization
problem for single failure in § IV-C. We also provide a
mathematical analysis to show the impact of SN topology on
the level of spare capacity sharing in § IV-C.3. We extend
§ VI to include evaluation results of our solutions against
double link failures, results of the two special cases of joint
optimization presented in § IV, and a quantitative comparison
between addressing SVNE at the InP level and that at the SP
level. Finally, we provide more in-depth discussion of related
work and compare our proposal with the sate-of-the-art.

The rest of this paper is organized as follows. We present the
related literature in § II and contrast our work with the state-
of-the-art. In § III, we present the system model and problem
statement followed by a discussion on how spare capacity can
be allocated along a virtual link. Then, we present our QIP
formulation for the joint optimization problem and the ILP
formulations for the optimal and special cases of the problem
along with a mathematical analysis in § IV. We present the
design of our heuristic in § V. The evaluation of our solutions
are presented in § VI. Finally, we conclude with some future
research directions in § VII.

II. RELATED WORK

We discuss the state-of-the-art in SVNE with Protection at
SN level and VN level in § II-A and § II-B, respectively.

We then contrast our approach with similar works from multi-
layer (e.g., IP-over-WDM) network survivability literature in
§ II-C.

A. SVNE With Protection at SN

Rahman et al. [6] were the first to address the SVNE
problem using a mixed ILP formulation. Since then a num-
ber of subsequent research works have addressed different
aspects of SVNE such as substrate node failure [7], [8], [31],
leveraging multi-path embedding [10], [11], shared backup
protection [12], [13], [18], reactive recovery [32]–[35], and
dedicated VN topology protection [14], [15] among others.
Reactive recovery approaches are fundamentally different from
our approach. They do not preallocate backup resources and
take action after a failure. Therefore, we exclude the reactive
approaches from our discussion here.

The SVNE literature exhibits a wide spectrum of protec-
tion approaches to improve resource utilization. For instance,
shared backup approaches proposed in [12], [13], and [18]
promote sharing of backup substrate resources for different
virtual entities. In contrast, the proposals in [14] and [15] go
to another extreme and propose to provide dedicated protection
for the whole VN topology, i.e., provision a full copy of the
VN as a backup. Their motivation is to strictly satisfy failure
recovery SLAs in transport networks carrying high volume
of traffic. The approaches described in [10] and [11] try to
optimize backup resource allocation by assuming in-network
multi-path routing support. They do not share backup among
the virtual entities, nor do they provide dedicated protection
to the VN topology. These proposals assume a virtual link
demand can be realized by multiple paths in the SN. Given
that the probability of all the embedding paths failing simulta-
neously is very low, only a fraction of the virtual link demand
needs to be provisioned disjointedly as a backup. All the
discussed approaches address the SVNE problem from an
InP’s perspective, i.e., the InP provisions backup resources
for a VN in the SN and manages failure recovery tasks.
However, they do not explore the solution space where a VN is
embedded in a way that an SP can perform failure handling
as we study in this paper.

B. SVNE With Protection at VN

Compared to the approaches that provide protection at the
SN level, only a few SVNE approaches focus on providing
protection at the VN level. Among them, an empirical study
by Wang et al. [22] compared different protection schemes
for VNs in T-SDNs. The results in [22] show that providing
protection at the VN level can increase VN acceptance ratio.
However, Wang et al. [22] do not provide any mechanism
to jointly optimize spare capacity allocation in a VN and
embed the VN accordingly. We previously studied a weaker
version of the SVNE problem with VN level protection in [9].
This work proposed to embed a VN on an SN in such way
that VN connectivity is ensured against multiple substrate link
failures. When failure occurs, the SP has to compute alternate
paths in the VN to restore the affected traffic which may incur
delay. In addition, this work does not guarantee any bandwidth
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in case of a failure and only allows the VN to operate in a
best effort manner. Barla et al. [36] proposed design models
for cloud services that provide resiliency either at the VN or at
the SN layer. Their resiliency model employs dedicated backup
consisting of additional virtual links to reach the recovery
data center. In contrast, our approach alleviates the need for
changing the VN topology and uses shared spare capacity
allocated to existing virtual links to survive link failures.

C. Network Survivability in Multi-Layer Networks

A similar problem to our joint optimization has been studied
in the IP-over-WDM literature, namely, Strongly Survivable
Routing (SSR) [27]. SSR performs mapping and capacity
assignment of IP links over lighpaths in a WDM network in
way that guarantees connectivity and spare capacity at the IP
layer during a failure in either IP or WDM layer. A simplified
version of SSR, namely, Weakly Survivable Routing (WSR)
determines the mapping of an IP network that remains con-
nected upon a WDM link failure. Although SSR and WSR
delegate survivability to the IP layer of a multi-layer network,
they do not pre-compute backup paths as we propose in this
paper. After a link fails, they require a time-consuming step
for finding alternate paths using the spare capacity in the IP
layer. In our approach for VN layer survivability, we obviate
such restoration step by computing and storing the backup
paths during VN embedding. Despite the difference, we now
discuss some prominent works that address SSR as well as
spare capacity allocation problem in multi-layer networks.

Kan et al. [19] and Lin et al. [27] addressed the SSR prob-
lem in two separate steps. In the first step, they solve the WSR
problem with distinct objectives. Specifically, Lin et al. [27]
map IP links on WDM lightpaths such that the smallest
capacity of the WDM link in the lightpaths is maximized,
whereas Kan et al. [19] minimize the maximum IP bandwidth
lost due to a WDM link failure. In the second step, they
assign spare capacity to the resultant mapping to ensure that
bandwidth demands of the IP links can be rerouted with full
capacity after a WDM link fails. However, their two stage
approach to the problem may not lead to the optimal solution.
More importantly, the first stage of their approach can generate
a mapping that may become infeasible in the second stage if
the required spare capacity cannot be assigned due to some
resource constraints. In addition, they do not consider spare
capacity sharing to minimize resource usage.

To improve resource efficiency, Liu et al. [20] leveraged
backup capacity sharing by allocating spare capacity in the top
layer of a two-layer network. However, this work assumes that
the mapping between top and bottom layers is pre-computed
and given as input to the spare capacity allocation problem.
Hence, this approach suffers from its inability to achieve
optimality similar to [19] and [27]. Kubilinskas and Pioro [21]
studied the survivability problem at the IP layer of an
IP-over-WDM network using hot standby path protection.
Their formulation has two shortcomings. First, it requires a
set of pre-computed candidate paths for each IP layer demand.
Second, although the formulation supports capacity sharing
between a primary path and its standby protection path, it does

not support capacity sharing among the protection paths, thus
resulting in poor resource utilization. A common feature of
the solutions of IP-over-WDM literature is that they assume
a fixed placement of IP routers in the network, whereas an
SVNE algorithm needs to determine both the mappings of
virtual nodes and links. Hence, solutions from IP-over-WDM
networks cannot be directly applied to our problem.

III. SYSTEM MODEL AND BACKGROUND

We first present basic notations in § III-A and a formal
statement of the problem in § III-B. We explain the concept of
shared risk groups in § III-C. We then discuss how embedding
affects spare capacity allocation on virtual links in § III-D.

A. Basic Notations

1) Substrate Network: We represent the substrate network
(SN) as an undirected graph, G = (V , E), where V and E
denote the set of substrate nodes (SNodes) and links (SLinks),
respectively. The set of neighbors of an SNode u ∈ V is
denoted by N (u). We associate the following attributes with
each SLink (u, v) ∈ E : (i) buv : bandwidth capacity of the
SLink (u, v), (ii) Cuv : cost of allocating unit bandwidth on
(u, v) for a VLink. We assume that the SNodes are network
nodes with sufficient capacity to switch traffic at peak rate
between any pair of ports. Therefore, we do not consider any
node mapping cost or node capacity constraint.

2) Virtual Network: We represent the virtual network (VN)
as an undirected graph Ĝ = (V̂ , Ê), where V̂ and Ê represent
the set of virtual nodes (VNodes) and virtual links (VLinks),
respectively. The set of neighbors of a VNode v̂ ∈ V̂ is
denoted by N (v̂). Each VLink (û, v̂) ∈ Ê has a bandwidth
demand bûv̂ . We also have a set of location constraints (LC),
L = {L(û)|L(û) ⊆ V , ∀û ∈ V̂ }, such that a VNode û ∈ V̂
can only be provisioned on an SNode u ∈ L(û). We use
a binary variable �ûu (1 if û ∈ V̂ can be provisioned on
u ∈ V , 0 otherwise), to represent this location constraint.
We denote the spare backup bandwidth allocated to a VLink
(û, v̂) ∈ Ê that serves as a backup for other VLinks by Sû v̂ .
We assume VNs are already K -edge connected to survive K
SLink failures. K -edge connectivity is a necessary condition
to ensure that at least K edge disjoint backup virtual paths
always exist for each VLink (û, v̂) ∈ Ê [27]. However, if a
VN has less than K -edge connectivity, any VN augmentation
strategy such as [9], [37], and [38] can make the VN K -edge
connected.

B. Problem Statement

Given an SN G = (V , E), a VN Ĝ = (V̂ , Ê), and LC L:

• For each VLink (û, v̂) ∈ Ê , allocate spare capacity along
a set of K backup virtual paths (VPaths) P̂ K

ûv̂
= {P̂k

ûv̂
|1 ≤

k ≤ K } in the VN, where P̂k
ûv̂

is the kth VPath between û
and v̂ such that P̂k

ûv̂
is edge disjoint from (û, v̂) and from

each P̂ j
ûv̂
∈ P̂ K

ûv̂
with j �= k, and bûv̂ spare bandwidth is

available on the VLinks in P̂k
û v̂

after (û, v̂) is affected by
an SLink failure.
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• Map each VNode v̂ ∈ V̂ to exactly one SNode,
u ∈ V . Multiple VNodes from the same VN request
should not be mapped to the same SNode. However,
multiple VNodes from different VNs can share an SNode.

• Map each VLink (û, v̂) to a non-empty substrate path
(SPath) Pûv̂ having sufficient bandwidth to accommodate
the primary demand of (û, v̂) and the spare backup
bandwidth allocated on (û, v̂). A VLink (û, v̂) and the
VLinks on its VPath P̂k

ûv̂
are edge disjointedly mapped

on the SN to ensure that SLink failures do not affect
them at the same time. Similarly, two VLinks present in
the two VPaths, such as P̂k

ûv̂
and P̂ j

û v̂
where j �= k, of the

same VLink (û, v̂) are mapped on edge disjoint SPaths
to eliminate the risk of both the VPaths failing together.

• Minimize the total cost of allocating bandwidth on the
SN to embed the VN equipped with spare bandwidth.

C. Shared Risk Group

VLinks that share at least one SLink on their mapped SPaths
share the same risk since all of them can be impacted if the
shared SLink fails. In a context where only single SLink failure
is considered, a set of VLinks belong to the same shared risk
group (SRG) if and only if they share at least one SLink on
their mapped SPaths. In contrast, VLinks that do not share
any SLink on their mapped SPaths belong to different SRGs.
To represent the SRGs, we partition the VLinks into a number
of SRGs represented by the set D = {d1, d2, d3, . . . d|D|},
where |D| ≤ |Ê |. A VLink belongs to exactly one SRG
di ∈ D and shares at least one SLink on its mapped SPath with
other VLinks in di . We use the following variable to decide a
VLink’s membership to an SRG:

dûv̂
i =

{
1 iff (û, v̂) ∈ Ê belongs to SRG di ∈ D,

0 otherwise.

D. Spare Capacity Assignment Model

Based on how the VLinks form different SRGs during
VN embedding, the requirement for spare backup capacity on
the VLinks can be different. We explain this fact with a simple
example illustrated in Fig. 3. In this example, VLink (a, b) is
on the backup VPaths of three other VLinks: (c, d), (e, f ),
and (g, h) as shown in Fig. 3(a). We can assign different spare
capacity on (a, b) to protect (c, d), (e, f ), and (g, h), based on
how these three VLinks are mapped. Consider the following
scenarios regarding their mappings:

All three belong to the same SRG. If all three VLinks
are in the same SRG, then they share at least one SLink on
their mapped SPaths (Fig. 3(b)). A single SLink failure can
affect all three VLinks. Therefore, spare backup capacity allo-
cated on (a, b) should be sufficient to support the bandwidth
requirement of all three VLinks, i.e., Sab = bcd + bef + bgh .

All three belong to different SRGs. If all three VLinks
belong to different SRGs, then they do not share any
SLink on their mapped SPaths (Fig. 3(c)). At most one
of the VLinks will be affected by a single SLink failure.
Therefore, Sab should be sufficient to support the maxi-
mum bandwidth requirement of these three VLinks, i.e.,
Sab = max(bcd , bef , bgh).

Fig. 3. Illustration of different SRGs based on embedding.

Two belong to the same SRG, the third in a different
SRG. The mapped SPaths can create multiple SRGs out
of these three VLinks. For example, in Fig. 3(d), VLinks
(c, d) and (e, f ) belong to the same SRG, whereas VLink
(g, h) belongs to a different SRG. A single SLink failure
will then affect only one group. Therefore, Sab should be
sufficient to support the group with the maximum requirement.
For the group with (c, d) and (e, f ), the bandwidth require-
ment is bcd + bef . For the other group, the requirement is
bgh . Therefore, spare backup bandwidth on (a, b) should be
max(bcd + bef , bgh).

More formally, if a VLink (û, v̂) ∈ Ê is present on the
backup VPaths of a set of VLinks Ĥûv̂ ⊆ Ê , and VLinks
in Ê form a set of D = {d1, d2, d3, . . . d|D|} SRGs, we can
generalize the spare backup bandwidth allocated to (û, v̂) as:

Sû v̂ = max∀di∈D

⎛
⎜⎝ ∑
∀(x̂,ŷ)∈Ĥûv̂

d x̂ ŷ
i bx̂ ŷ

⎞
⎟⎠ (1)

IV. PROBLEM FORMULATION

We first provide a QIP formulation to optimally solve
the joint spare capacity allocation and survivable embedding
problem for the case of single substrate link failure in § IV-A.
We then describe the transformation of the QIP to an ILP,
namely Opt-ILP, in § IV-B. However, due to an overwhelming
number of decision variables and constraints, Opt-ILP is only
scalable to very small problem instances. Therefore, in § IV-C,
we present simplified ILP formulations for two special cases
of the joint optimization problem, along with a mathematical
analysis that dictates how to select one of the ILP formulations
based on the topological properties of an SN. Finally, § IV-D
discusses how we can extend our solution to handle multiple
independent SLink failures.

A. Quadratic Integer Program Formulation

We first present our decision variables (§ IV-A.1). Then we
introduce the constraints (§ IV-A.2) followed by the objective
function of our formulation (§ IV-A.3).
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1) Decision Variables: For each VLink (û, v̂) ∈ Ê , there is
a backup VPath P̂ûv̂ that provides protection to (û, v̂) from a
single SLink failure. When any SLink on the VLink’s mapped
SPath fails, P̂ûv̂ provides the full bandwidth bûv̂ between the
VNodes û and v̂ . The following decision variable defines
whether a VLink (û, v̂) ∈ Ê belongs to the VPath protecting
a VLink (x̂, ŷ) ∈ Ê :

zûv̂
x̂ ŷ=

{
1 if (û, v̂)∈ Ê is on the backup VPath of (x̂, ŷ)∈ Ê,

0 otherwise.

Note that, zûv̂
ûv̂
= 0, since a VLink’s backup VPath has to

be edge disjoint from itself.
The following decision variable indicates the mapping

between a VLink (û, v̂) ∈ Ê and an SLink (u, v) ∈ E :

x ûv̂
uv =

{
1 if (û, v̂) ∈ Ê is mapped to (u, v) ∈ E,

0 otherwise.

The VNode to SNode mapping is denoted using the follow-
ing decision variable:

yûu =
{

1 if û ∈ V̂ is mapped to u ∈ V ,

0 otherwise.

As discussed in § III-C, VLinks that share at least one
SLink on their mapped SPaths belong to the same SRG.
SRG membership is defined using the decision variable dûv̂

i ,
presented in § III-C.

2) Constraints:
a) VNode Mapping Constraints: (2) and (3) ensure that

each VNode of a VN is provisioned on an SNode satisfying
the provided location constraints. Moreover, (4) constraints an
SNode to host at most one VNode from the same VN. Note
that VNode mapping follows from the VLink mapping, since
there is no cost associated with the VNode mapping.

∀û ∈ V̂ , ∀u ∈ V : yûu ≤ �ûu (2)

∀û ∈ V̂ :
∑
u∈V

yûu = 1 (3)

∀u ∈ V :
∑
û∈V̂

yûu ≤ 1 (4)

b) Backup VPath Continuity Constraints: A VLink in a
VN is protected by a VPath in the VN to survive a single SLink
failure. (5) ensures continuity of a backup VPath protecting a
VLink (x̂, ŷ) ∈ Ê :

∀(x̂, ŷ) ∈ Ê :
∑

∀v̂∈N (û)\{ŷ}
(zûv̂

x̂ ŷ − z v̂ û
x̂ ŷ) =

⎧⎪⎨
⎪⎩

1 if û = x̂

−1 if û = ŷ

0 otherwise

(5)

c) VLink Mapping Constraints: We ensure that every
VLink is mapped to a non-empty set of SLinks using (6).
Then, (7) makes sure that the in-flow and out-flow of each
SNode is equal, except for the SNodes where the endpoints
of a VLink are mapped. This ensures that the non-empty set
of SLinks corresponding to a VLink’s mapping form a single

continuous SPath.

∀(û, v̂) ∈ Ê :
∑

∀(u,v)∈E

x ûv̂
uv ≥ 1 (6)

∀û, v̂ ∈ V̂ , ∀u ∈ V :
∑

∀v∈N (u)

(x ûv̂
uv − x ûv̂

vu ) = yûu − yv̂u (7)

The binary nature of the VLink mapping decision variable
and the flow constraint prevent any VLink from being mapped
to more than one SPaths, thus, restricting the VLink mapping
to the Multi-commodity Unsplittable Flow Problem [39].

d) Capacity Constraints: We also need to ensure that we
do not over-commit the bandwidth resources we have on the
SLinks. To do so, we first compute the spare backup bandwidth
allocated to a VLink (û, v̂) ∈ Ê using (1) as follows:

Sûv̂ = max∀di∈D

∑
∀(x̂,ŷ)∈Ê\{(û,v̂)}

zûv̂
x̂ ŷ × d x̂ ŷ

i × bx̂ ŷ (8)

Then, the following constraints prevent any over-commit of
the bandwidth resource on the SLinks:

∀(u, v) ∈ E :
∑

∀(û,v̂)∈Ê

x ûv̂
uv × (bûv̂ + Sûv̂ ) ≤ buv (9)

Note that (9) is a cubic constraint, since Sûv̂ is quadratic
according to (8). Therefore, we take the following steps to
linearize Sûv̂ in order to keep (9) in quadratic order. First,
we introduce a new variable gûv̂

x̂ ŷ(i), defined as follows:

gûv̂
x̂ ŷ(i) =

{
0 if zûv̂

x̂ ŷ = 1 and d x̂ ŷ
i = 1,

1 otherwise.

Essentially, for a given VLink (û, v̂) ∈ Ê , the zero values of
gûv̂

x̂ ŷ(i) induce a set of VLinks that belong to the same SRG

and have (û, v̂) on their backup VPaths. The value of gûv̂
x̂ ŷ(i)

is set using the following constraint:

∀(û, v̂) ∈ Ê,∀(x̂, ŷ) ∈ Ê,∀di ∈ D : zûv̂
x̂ ŷ + d x̂ ŷ

i + gûv̂
x̂ ŷ(i) ≤ 2

(10)

We can use gûv̂
x̂ ŷ(i) to rewrite (8) in a linear form as follows:

Sûv̂ = max∀di∈D

∑
∀(x̂,ŷ)∈Ê\{(û,v̂)}

(1− gûv̂
x̂ ŷ(i))× bx̂ ŷ (11)

Since our objective function will be a minimization func-
tion, we define gûv̂

x̂ ŷ(i) such that setting it to 1 minimizes the
value of Sû v̂ , unless it is constrained to be 0 according to (10).
This constrained case will only occur when both zûv̂

x̂ ŷ and d x̂ ŷ
i

are 1, as enforced by (10).
e) SRG Constraints: The mapped SPaths of the VLinks

from an SRG di , must be edge disjoint from the mapped
SPaths of the VLinks from a different SRG d j (∀ j �= i ).
This is accounted for in (12). (13) ensures that two VLinks
from the same SRG share at least one SLink on their mapped
SPaths. Note that a VLink (û, v̂) ∈ Ê cannot be present in
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more than one SRGs, which is satisfied by (14).

∀(u, v) ∈ E, ∀(û, v̂) ∈ Ê, ∀(x̂, ŷ) ∈ Ê,

∀di ∈ D, ∀d j ∈ D s.t. (û, v̂) �= (x̂, ŷ) and i �= j :
dûv̂

i + d x̂ ŷ
j + x ûv̂

uv + x ûv̂
vu + x x̂ ŷ

uv + x x̂ ŷ
vu ≤ 3 (12)

∀di ∈ D, ∀(û, v̂) ∈ Ê, ∀(x̂, ŷ) ∈ Ê s.t. (û, v̂) �= (x̂, ŷ),

∃(u, v) ∈ E : dûv̂
i + d x̂ ŷ

i + x ûv̂
uv + x ûv̂

vu + x x̂ ŷ
uv + x x̂ ŷ

vu = 4 (13)

∀(x̂, ŷ) ∈ Ê :
∑
∀di∈D

dx̂ ŷ
i = 1 (14)

f) Survivability Constraints: To ensure survivability of
the VN under single SLink failure, the mapped SPath of a
VLink cannot share any SLink with the mapped SPaths of the
VLinks present on its backup VPath. The following constraints
make sure this edge disjointedness requirement:

∀(u, v)∈E, ∀((û, v̂), (x̂, ŷ))∈ Ê × Ê s.t. (û, v̂) �=(x̂, ŷ) :
zx̂ ŷ

ûv̂
+ x ûv̂

uv + x ûv̂
vu + x x̂ ŷ

uv + x x̂ ŷ
vu ≤ 2 (15)

3) Objective Function: As per the problem statement pre-
sented in § III-B, we do not consider any node mapping cost
in our VN embedding. Thus, our cost function minimizes
the total cost of provisioning the working and spare backup
bandwidth for the VLinks of a VN on the SLinks of an SN.
This gives us the following objective function:

minimize

⎛
⎝ ∑
∀(û,v̂)∈Ê

∑
∀(u,v)∈E

x ûv̂
uv × Cuv × (bûv̂ + Sûv̂ )

⎞
⎠ (16)

B. ILP Transformation, Opt-ILP

Our formulation for the joint optimization problem has a
quadratic constraint (9) and a quadratic objective function (16).
Therefore, the QIP presented in § IV-A is a Quadratically Con-
strained Quadratic Program (QCQP) and falls into the general
category of the Quadratic Assignment Problem (QAP) [40].
Solving a QAP is computationally expensive and is known
to be NP-hard [41]. Sahni and Gonzalez [42] proved that
even finding an ε−approximate solution of QAP is NP-hard.
We now present the steps to linearize the QIP by using a
technique similar to the one discussed in [43]. For the purpose
of linearization, we first put a bound on the spare backup
bandwidth of a VLink (û, v̂) ∈ Ê , i.e., Sûv̂ : 0 ≤ Sûv̂ ≤ λ,
where λ is a very large value. We also introduce a new integer
variable qûv̂

uv , defined in terms of x ûv̂
uv as follows:

qûv̂
uv =

{
Sûv̂ if x ûv̂

uv = 1,

0 if x ûv̂
uv = 0.

The following constraints enforce the above definition.

∀(u, v) ∈ E, ∀(û, v̂) ∈ Ê : qûv̂
uv ≥ 0 (17)

∀(u, v) ∈ E, ∀(û, v̂) ∈ Ê : Sû v̂ − λ× (1− x ûv̂
uv ) ≤ qûv̂

uv

(18)

To elaborate, when x ûv̂
uv = 0, constraints (17) and (18)

become qûv̂
uv ≥ 0 and Sûv̂ − λ ≤ qûv̂

uv , respectively. Since λ is
a very large value by definition, the constraints finally reduce

to qûv̂
uv ≥ 0. On the other hand, when x ûv̂

uv = 1, constraint (17)
and (18) become qûv̂

uv ≥ 0 and Sû v̂ ≤ qûv̂
uv , respectively. In this

later case, constraint (18), i.e., Sû v̂ ≤ qûv̂
uv dominates. Finally,

if we include qûv̂
uv in the minimization objective function,

the smallest possible value of qûv̂
uv will be used to minimize

the value of the objective function, yielding qûv̂
uv = Sûv̂ (for

x ûv̂
uv = 1) and qûv̂

uv = 0 (for x ûv̂
uv = 0).

We now rewrite the capacity constraint (9) as the following
linear constraint using qûv̂

uv .

∀(u, v) ∈ E :
∑

∀(û,v̂)∈Ê

(x ûv̂
uv × bûv̂ + qûv̂

uv ) ≤ buv (19)

Similarly, the quadratic objective function can be written in
a linearized form as follows:

minimize

⎛
⎝ ∑
∀(û,v̂)∈Ê

∑
∀(u,v)∈E

x ûv̂
uv × Cuv × bûv̂ + Cuv × qûv̂

uv )

⎞
⎠

(20)

C. Problem Variations

Opt-ILP is scalable to very small problem instances due
to its large number of constraints and variables. For instance,
the number of constraints generated by capacity constraints
(10) and SRG constraints (12) and (13) are Ê3, E × Ê4,
and E × Ê3, respectively. Similarly, the number of variables
generated by d x̂ ŷ

i and gûv̂
x̂ ŷ(i) are Ê2 and Ê3. To reduce

problem complexity, we formulate two simpler variants of Opt-
ILP, namely Max-ILP and Min-ILP, that represent maximum
and minimum sharing of spare capacity, respectively.

1) ILP for Maximum Spare Capacity Sharing, Max-ILP:
Design of Max-ILP is motivated by an observation from our
evaluation results that for a VLink (û, v̂), Opt-ILP assigns the
VLinks in Ĥûv̂ into separate SRGs whenever VLinks in Ĥûv̂

can be mapped to disjoint SPaths, thus preferring more sharing
of the spare capacity. Therefore, Max-ILP enforces maximum
sharing of spare backup capacity Sû v̂ of a VLink (û, v̂) among
the VLinks in Ĥûv̂ that have (û, v̂) in their VPaths, similar to
the example shown in Fig. 3(c). In order to guarantee full
bandwidth between pairs of VNodes during an SLink failure,
Max-ILP forcefully assigns VLinks in Ĥûv̂ into separate
SRGs instead of deciding the assignment dynamically during
embedding. In this way, Max-ILP eliminates decision variables
d x̂ ŷ

i and gûv̂
x̂ ŷ(i) from the capacity and SRG constraints of Opt-

ILP. Therefore, in Max-ILP, we can rewrite (11) as follows
and eliminate the constraints in (10):

Sûv̂ = max
∀(x̂,ŷ)∈Ê\{(û,v̂)}

zûv̂
x̂ ŷ × bx̂ ŷ (21)

Similarly, we can replace SRG constraints (12), (13), and
(14) of Opt-ILP by the following disjointedness constraints:

∀(u, v) ∈ E, ∀(û, v̂) ∈ Ê, ∀(x̂, ŷ) ∈ Ê \ {(û, v̂)},
∀(â, b̂) ∈ Ê \ {(û, v̂), (x̂, ŷ)} :
zûv̂

x̂ ŷ + zûv̂
âb̂
+ x x̂ ŷ

uv + x x̂ ŷ
vu + x âb̂

uv + x âb̂
vu ≤ 3 (22)

These disjointedness constraints ensure that if a VLink
(û, v̂) ∈ Ê is in the backup VPaths of two other VLinks
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such as (x̂, ŷ) ∈ Ê \ (û, v̂) and (â, b̂) ∈ Ê \ (û, v̂), (x̂, ŷ)
and (â, b̂) cannot share an SLink in their mappings. However,
(x̂, ŷ) and (â, b̂) can share an SLink if their VPaths do not
have any common VLink. Therefore, Max-ILP consists of
the constraints (21), (22), and all the constraints of Opt-ILP
except the constraints (10), (11), (12), (13), and (14). The
same objective function (20) of Opt-ILP prevails in Max-ILP.
Thus, Max-ILP replaces higher order variables and constraints
of Opt-ILP by a lower order constraint. The disadvantage of
Max-ILP is that it may require more disjoint SPaths to satisfy
constraints of (22) than those required by Opt-ILP.

2) ILP for No Spare Capacity Sharing, Min-ILP: Max-ILP
requires that all the VLinks in Ĥûv̂ are mapped to disjoint
SPaths. This is only achievable in SNs where adequate disjoint
SPaths can be found. However, in sparse SNs, Max-ILP may
become infeasible due to the unavailability of disjoint SPaths.
Such infeasibility can also occur in SNs having trap topo-
logical structure [44], [45]. We have observed this behavior
in our evaluation for embedding VNs in sparser SNs. Despite
the infeasibility of Max-ILP, Opt-ILP is able to find a solution
in such SNs by striking a balance between the level of spare
capacity sharing and the number of disjoint SPaths. Following
this observation, we present an ILP formulation, Min-ILP, that
does not allow any sharing of spare backup capacity as shown
in Fig. 3(b). Consequently, all the VLinks in Ĥûv̂ belong
to only one SRG and the SRG constraints (12), (13), and
(14) of Opt-ILP can be eliminated from Min-ILP. In addition,
we can exclude decision variables d x̂ ŷ

i and gûv̂
x̂ ŷ(i) and the

constraint (11) from Min-ILP. However, the disadvantage of
Min-ILP is that all the VLinks in Ĥûv̂ can be affected during
an SLink failure due to sharing of the same risk. Hence,
the spare backup capacity of a VLink Sûv̂ in Min-ILP should
be adequate enough to serve the bandwidth of all the VLinks
in Ĥûv̂ . This increases the spare backup capacity requirement
Sûv̂ of a VLink as shown by the following equation:

Sû v̂ =
∑

∀(x̂,ŷ)∈Ê\{(û,v̂)}
zûv̂

x̂ ŷ × bx̂ ŷ (23)

Similar to Max-ILP, Min-ILP consists of the constraints (23)
and all the constraints of Opt-ILP except the constraints (10),
(11), (12), (13), and (14). The same objective function (20)
of Opt-ILP prevails in Min-ILP as well. In this way, Min-ILP
replaces all the higher order decision variables and constraints
of Opt-ILP. Another potential drawback of Min-ILP is that
it has to explore a larger search space than Max-ILP would
require due to Min-ILP’s lower number of constraints.

3) Comparative Study Between Max-ILP and Min-ILP:
Recall from § III-D that based on how the VLinks are sharing
risks in their mappings, the spare capacity allocation can be
different on a VLink. One extreme case is when all the VLinks
in Ĥûv̂ are mapped disjointedly (Max-ILP). Another extreme
case is when there is minimal disjointedness in the mapping,
i.e., VLinks are mapped disjointedly only when constrained by
the backup VPath’s survivability constraints (15) (Min-ILP).
We now present a mathematical analysis showing how the
mapped SPath length affects the preference for disjointedness.

Let us assume for the sake of simplicity that VLinks in Ĥûv̂

are not on the backup VPath of any other VLink. We represent

the mean mapped SPath length for Max-ILP and Min-ILP as
P and R, respectively. Note that P and R should be different
since Max-ILP has to satisfy disjointedness constraints (22),
thus resulting in longer SPaths. On the other hand, SPaths in
Min-ILP have no such disjointedness requirements to adhere
to, thereby yielding shorter SPaths. Finally, we assume a unit
cost of allocating bandwidth on the SLink, i.e., ∀(u, v) ∈ E :
Cuv = 1. In Max-ILP, each VLink in Ĥûv̂ belongs to different
SRGs. Using (21), spare capacity requirement for Max-ILP is:

Smax
ûv̂ = max

∀(x̂,ŷ)∈Ĥûv̂

bx̂ ŷ (24)

In Min-ILP, all the VLinks in Ĥûv̂ for a given (û, v̂) ∈ Ê
belong to the same SRG. Therefore, we can compute spare
capacity requirement for Min-ILP using (23) as follows:

Smin
ûv̂ =

∑
∀(x̂,ŷ)∈Ĥûv̂

bx̂ ŷ (25)

For Max-ILP, the cost of mapping the VLinks in Ĥûv̂ ∪
{(û, v̂)} is obtained by combining (16) and (24) as follows:

costmax = P ×
⎛
⎜⎝bûv̂ + max

∀(x̂,ŷ)∈Ĥûv̂

bx̂ ŷ +
∑

∀(x̂,ŷ)∈Ĥûv̂

bx̂ ŷ

⎞
⎟⎠

Similarly, the cost of mapping the VLinks in Ĥûv̂ ∪{(û, v̂)}
for Min-ILP can be obtained by combining (16) and (25) as:

costmin = R×
⎛
⎜⎝bûv̂ + 2

∑
∀(x̂,ŷ)∈Ĥûv̂

bx̂ ŷ

⎞
⎟⎠

Now, costmax < costmin will be true if:

P ×
⎛
⎜⎝bûv̂ + max

∀(x̂,ŷ)∈Ĥûv̂

bx̂ ŷ +
∑

∀(x̂,ŷ)∈Ĥûv̂

bx̂ ŷ

⎞
⎟⎠

< R×
⎛
⎜⎝bûv̂ + 2

∑
∀(x̂,ŷ)∈Ĥûv̂

bx̂ ŷ

⎞
⎟⎠

This gives us the following final inequality:

P
R <

bûv̂ + 2×
∑

∀(x̂,ŷ)∈Ĥûv̂

bx̂ ŷ

bûv̂ + max
∀(x̂,ŷ)∈Ĥûv̂

bx̂ ŷ +
∑

∀(x̂,ŷ)∈Ĥûv̂

bx̂ ŷ

When the set Ĥûv̂ is sufficiently large, we have bûv̂ ≤
max

∀(x̂,ŷ)∈Ĥûv̂

bx̂ ŷ 

∑

∀(x̂,ŷ)∈Ĥûv̂

bx̂ ŷ , yielding P <∼ 2R. This

gives us the following insight: as long as the mean mapped
SPath length of the Max-ILP does not become about twice the
mean mapped SPath length of the Min-ILP, Max-ILP yields an
embedding with a lower cost than Min-ILP. In other words,
cost of Max-ILP will only exceed the cost of Min-ILP when
the increase in mean SPath length due to satisfying disjoint-
edness constraints (22) is almost equal to the mean SPath
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length computed without the disjointedness constraints (22).
Such situation can occur in sparse SNs that lack path diversity.
In contrast, dense SNs have higher path diversity and higher
number of SLinks. Consequently, the number of edge-disjoint
SPaths is also higher in denser SNs than in sparser SNs [46].
To satisfy disjointedness constraints, denser SNs increase
mean SPath length by a smaller factor compared to that
in sparser SNs. Therefore, Min-ILP should be the preferred
choice only in extremely sparse SNs, whereas Max-ILP can
be used in all other types of SNs. This result motivates us
to develop a heuristic algorithm that prefers sharing of spare
capacity much like the case of Max-ILP.

D. Single to Multiple SLink Failures

We now discuss how our solutions for single SLink failure
can be extended to handle multiple SLink failures. Since Max-
ILP closely approximates Opt-ILP (see § VI-C.3) and Max-
ILP is more resource efficient than Min-ILP (see § IV-C.3),
we focus on extending Max-ILP for multiple SLink failures.
As discussed in [47], there are two methods to survive against
multiple (say K ) link failures in a single layer network, a VN
in our case. In the first method, for each VLink (û, v̂), provi-
sion spare capacities across K edge-disjoint backup VPaths
so that at least one of them provides the full bandwidth
even if (û, v̂) and K − 1 of the backup VPaths are affected
by K simultaneous VLink failures. During VN embedding,
the disjoint path requirement translates to the following: a
VLink in the k-th edge-disjoint backup VPath (including
(û, v̂)) and another VLink in the j -th ( j �= k) edge-disjoint
VPath should be embedded on disjoint SPaths. In the second
method, for each VLink (û, v̂), provision only one backup
VPath P̂û v̂ such that the VLinks in P̂ûv̂ have enough spare
capacity to carry all the traffic of any K VLinks in the VN.
In this case, rerouting of traffic during the failure of (û, v̂)
is the same as previous case. However, during the failures
of (û, v̂) and any VLink (x̂, ŷ) ∈ P̂û v̂ , traffic is rerouted to
the VPath consisting of (P̂ûv̂ − (x̂, ŷ)) ∪ P̂x̂ ŷ , where P̂x̂ ŷ is
the backup VPath between x̂ and ŷ. This method requires
lesser number of disjoint paths compared to the first method,
i.e., only (û, v̂) and any VLink in P̂û v̂ need to be embedded
on disjoint SPaths. However, spare capacity requirement can
be unnecessarily high since a VLink in P̂x̂ ŷ has to carry the
traffic of K other VLinks that may have been impacted by K
SLink failures, limiting the applicability of the second method.
An additional disadvantage of this method is that rerouted
traffic may have to traverse many VLinks chained through
backup VPaths when K VLinks fail [47]. Hence, we adopt
the first method in extending Max-ILP to handle the case of
multiple SLink failures as discussed in the following. First,
we modify the decision variable defining VPath relationships
to take into account multiple VPaths as below:

zûv̂
x̂ ŷ(k) =

{
1 if (û, v̂) is on the kth backup VPath of (x̂, ŷ),

0 otherwise.

Similar to (5), we need to have VPath continuity constraints
for each of backup VPaths of a VLink. In addition, we need

the following constraints to ensure the edge-disjointedness of
the K backup VPaths of a VLink.

∀k = 1, 2, . . . , K , ∀ j = 1, 2, . . . , K s.t. k �= j,

∀((û, v̂), (x̂, ŷ)) ∈ Ê × Ê s.t. (û, v̂) �= (x̂, ŷ) :
zx̂ ŷ

ûv̂
(k)+ zx̂ ŷ

ûv̂
( j) ≤ 1 (26)

Following (15), we need survivability constraints between
the mappings of a VLink and the VLinks in each of its backup
VPaths. We also need to ensure that two VLinks present in two
backup VPaths of a VLink are embedded on disjoint SPaths:

∀k = 1, 2, . . . , K , ∀ j = 1, 2, . . . , K s.t. k �= j,

∀(x̂, ŷ), ∀((û, v̂ ), (â, b̂)) ∈ Ê × Ê s.t. (û, v̂) �= (â, b̂) :
zx̂ ŷ

ûv̂
(k)+ zx̂ ŷ

âb̂
( j)+ x ûv̂

uv + x ûv̂
vu + x âb̂

uv + x âb̂
vu ≤ 3 (27)

Finally, the spare capacity constraints in (21) need to
be modified to handle K SLink failures. Ideally, the spare
capacity Sû v̂ on a VLink (û, v̂) should be sufficient to carry
the traffic of any K VLinks that have (û, v̂) in any of their
backup VPaths. Accordingly, we modify the spare capacity
requirement as follows:

Sû v̂ = max
∀ξ⊂Ê s.t . |ξ |=K

∑
∀(x̂,ŷ)∈ξ

∑
1≤k≤K

zx̂ ŷ
ûv̂

(k)× bx̂ ŷ (28)

As discussed in [47] and [48], not all backup VPaths are
used simultaneously even for K = 2 in a single layer VN.
In fact, spare capacity along VPaths can be efficiently shared
by introducing constraints similar to the ones presented in [48]
and by taking into account different embedding options of the
VLinks of a VN. Extending these constraints for embedding
a VN with K >= 2 can result in combinatorial number of
constraints, and can be investigated as a future research.

V. HEURISTIC ALGORITHM

The coordinated node and link mapping of the aforemen-
tioned ILP formulations without the disjointedness constraints
is at least as hard as the NP-Hard Multi-commodity Unsplit-
table Flow Problem [39], when the sources and destinations of
the flows are unknown. To tackle the computational intractabil-
ity of the ILP formulations, we develop a heuristic algorithm
for the joint spare backup capacity allocation and survivable
embedding problem against multiple (e.g., K ) SLink failures.
Our heuristic algorithm is presented as a pseudocode in Alg. 1.
The algorithm solves the joint optimization problem for arbi-
trary K in two steps: (i) estimate the spare backup bandwidth
on the VLinks, determine the disjointedness requirements
based on this estimation, and perform a VN Embedding
(§ V-A), (ii) re-optimize spare backup bandwidth alloca-
tions using different backup multiplexing techniques proposed
in [47]–[49] (§ V-B).

A. Joint Spare Bandwidth Allocation and VN Embedding

Alg. 1 starts by initializing the estimated spare backup
bandwidth of each VLink, Sest

û v̂
to 0 and by placing all the

VLinks into a single SRG d1. In addition, it initializes a Max-
Priority-Queue Tûv̂ for each (û, v̂) to be used for spare capacity
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Algorithm 1: Embed VN With Protection

1 function VNEmbedding(G, Ĝ, C, σ , K )
2 D← {d1, d2, . . . d|Ê |}
3 foreach û ∈ V̂ do nmapû ← NIL
4 foreach (û, v̂) ∈ Ê do
5 Sest

ûv̂
← 0, �ûv̂ ← σ , S RGûv̂ ← d1, emapû v̂ ← φ

6 Tûv̂ ← Max − Priori t y − Queue()
7 foreach k=1, 2, …, K do
8 backupest

ûv̂
(k)← φ

9 V̂ ← Sort û ∈ V̂ in decreasing order of |N (û)|
10 foreach û ∈ V̂ do
11 foreach v̂ ∈ N (û) do
12 foreach k=1, 2, …, K do
13 backupest

ûv̂
(k)←

GetBackup(Ĝ, (û, v̂),�, emap, k)
14 foreach (x̂ , ŷ) ∈ backupest

ûv̂
(k) do

15 Tx̂ ŷ.EnQueue(bûv̂ )
16 Sest

x̂ ŷ ←
∑

0≤i<min(K , Tx̂ ŷ .Size()) Tx̂ ŷ[i ]
17 if S RGûv̂ = S RGx̂ ŷ then
18 Find d j ∈ D s.t.

S RGŵẑ �= d j ,∀(ŵ, ẑ) ∈ Ê
19 S RGûv̂ ← d j

20 Ĥx̂ ŷ ← {(â, b̂) ∈ Ê |(x̂, ŷ) ∈ backupest
âb̂

(1)}
21 foreach (â, b̂) ∈ Ĥx̂ ŷ do
22 if S RGûv̂ = S RGâb̂ then
23 Find d j ∈ D s.t.

S RGŵẑ �= d j ,∀(ŵ, ẑ) ∈ Ê
24 S RGûv̂ ← d j
25 if K > 1 then
26 foreach j=1, 2, …, k-1 do
27 foreach (â, b̂) ∈ backupest

ûv̂
( j ) do

28 if S RGx̂ ŷ = S RGâb̂ then
29 Find d j ∈ D s.t.

S RGŵẑ �= d j ,∀(ŵ, ẑ) ∈ Ê
30 S RGx̂ ŷ ← d j

31 bestû ← NIL, Qbest
û ← φ, cbest ←∞

32 foreach l ∈ L(û) do
33 foreach v̂ ∈ N (û) do
34 W ← C
35 ζ ← {(u, v) ∈ E |S RGx̂ ŷ �= S RGûv̂ ∧ (u, v) ∈

emapx̂ ŷ,∀(x̂ , ŷ) ∈ Ê}
36 foreach (m, n) ∈ ζ do Wmn ←∞
37 if nmapv̂ �= NIL then
38 Qûv̂ ←CWSP(G, l, nmapv̂ , bû v̂ , W )
39 else Qûv̂ ← min

∀m∈L(v̂)
{CWSP(G, l, m, bûv̂ , W )}

40 if ∃v̂ ∈ N (û) : Qûv̂ = φ then c←∞
41 else c←∑

∀v̂∈N (û) Qûv̂

42 if c < cbest then
43 bestû ← l , Qbest

û ← Qû, cbest ← c
44 if bestû = NIL then return {φ, φ, φ, φ}
45 nmapû ← bestû
46 foreach v̂ ∈ N (û) and nmapv̂ �= NIL do
47 emapû v̂ ← Qbest

ûv̂
, �ûv̂ ← Cost (Qbest

û v̂
)

48 {backup, S} ← UpdateBackup(Ĝ , backup, S RG , K )
49 return {nmap, emap, backup, S}

computation. Tûv̂ will contain, in descending order, the band-
widths of all the VLinks in Ĥûv̂ . Alg. 1 then proceeds to map
the VNodes from the most constrained to the least constrained

Algorithm 2: Compute Backup VPath of a VLink

1 function GetBackup(Ĝ, (û, v̂), �, emap, k)
2 foreach (x̂, ŷ) ∈ Ê do
3 if (∃ j | j < k and (x̂, ŷ) ∈ backupest

ûv̂
( j)) then

Weightest
x̂ ŷ ←∞

4 else if Tx̂ ŷ[K − 1] ≥ bûv̂ then Weightest
x̂ ŷ ← 1

5 else if emapx̂ ŷ = φ or min
(u,v)∈Qx̂ŷ

bresidual
uv ≥ bûv̂

then
6 Stemp

x̂ ŷ ← bûv̂ +
∑

0≤i<min(K−1, Tx̂ ŷ .Size()) Tx̂ ŷ[i ]
7 Weightest

x̂ ŷ ← (Stemp
x̂ ŷ − Sest

x̂ ŷ )×�x̂ ŷ

8 else Weightest
x̂ ŷ ←∞

9 Weightest
ûv̂
←∞

10 return CWSP(Ĝ, û, v̂, bûv̂ , Weightest )

ones, i.e., in decreasing order of their degrees. If two VNodes
have equal degrees then we arbitrarily select one of them. For
a VNode û, Alg. 1 first finds K estimated backup VPaths for
each VLink incident to û by iteratively invoking GetBackup
procedure (Alg. 2). Alg. 2 invokes Constrained Weighted
Shortest Path (CWSP) procedure to compute a VPath with at
least bûv̂ bandwidth between û and v̂ in the VN Ĝ, according
to a weight function, Weightest .

Alg. 2 first computes the weight function Weightest for
all the VLinks and invokes CWSP procedure to obtain kth

backup VPath between û and v̂. For the VLink (û, v̂), Alg. 2
assigns infinite weights to all the VLinks which have been used
by the other backup VPaths of (û, v̂) to avoid having them
appear again in the current backup VPath (Line 3). It gives
lower weights to a VLink (x̂, ŷ), if at least K VLinks in
Ĥx̂ ŷ have bandwidth larger than bûv̂ . This means that Sest

x̂ ŷ
is already sufficient to serve the bandwidth of K VLinks
impacted by K SLink failures, thus allowing (û, v̂) to share the
assigned spare bandwidth Sest

x̂ ŷ without increasing it (Line 4).

On the other hand, if Ĥx̂ ŷ has less than K VLinks (i.e.,
|Tx̂ ŷ| < K ) or if bûv̂ is larger than at least one of the first
K largest bandwidths of Ĥx̂ ŷ , Sest

x̂ ŷ will increase as a result
of using (x̂, ŷ) in the kth backup VPath between û and v̂ .
The increased spare capacity requirement is represented by
Stemp

x̂ ŷ and the amount of increase is bûv̂ in the first case
or the difference between bûv̂ and the Kth element of Tx̂ ŷ
in the second case. The weight function of CWSP takes the
possibility of increase in the spare capacity requirement and
the mapping cost �x̂ ŷ of an already mapped VLink (x̂, ŷ)
into account and assigns (x̂, ŷ) a weight proportional to both
of these. In line 7, a special case occurs when a VLink (x̂, ŷ) is
not yet mapped. In this case, �x̂ ŷ is set to use the mean SPath
length (σ ) as an indicator of future cost (Line 5 of Alg. 1).
Finally, an infinite weight is set to the VLinks whose mapped
SPaths do not have adequate residual capacity to exclude them
from the search space (Line 8 of Alg. 2).

After computing each estimated backup VPath
backupest

ûv̂
(k), Alg. 1 updates Sest

x̂ ŷ for all (x̂, ŷ) ∈
backupest

ûv̂
(k). To do so, Alg. 1 first inserts bûv̂ into

the right position of the decreasingly sorted queue Tx̂ ŷ .
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Following (28), Alg. 1 computes Sest
x̂ ŷ as the summation of

either the first K largest elements of Tx̂ ŷ or all the elements
of Tx̂ ŷ if |Tx̂ ŷ| < K (Line 17). It then places (û, v̂) and
(x̂, ŷ) into different SRGs (Line 20). It also places (û, v̂) and
all other VLinks that use (x̂, ŷ) in their backup VPaths into
different SRGs (Line 25). Finally, it places (x̂, ŷ) and any
VLink (â, b̂) present in any of the other K −1 backup VPaths
of (û, v̂) into different SRGs. After finding the estimated
backup VPaths and SRGs of all the incident VLinks of a
VNode û, Alg. 1 finds the mapping of û and VLinks incident
to û. It iterates over all candidate SNodes l ∈ L(û) and
selects the one that results in the least cost mapping for
all the VLinks incident to û (Line 33 − 44). For a specific
l ∈ L(û) and v̂ ∈ N (û), if v̂ is already mapped to nmapv̂ ,
Alg. 1 computes CWSP from l to nmapv̂ (Line 39), while
satisfying capacity constraints and SRG constraints in the SN
(using the weights in W ). To do so, Alg. 1 identifies the set
of SLinks that the mapping of (û, v̂) should be disjoint from
and assigns ∞ as their weights (Line 37). On the other hand,
if v̂ is not mapped yet, it computes CWSPs from l to the
SNodes m ∈ L(v̂) and selects the CWSP with the minimum
cost (Line 40). After mapping a VNode û, Alg. 1 maps the
VLinks whose both endpoints have already been mapped and
updates � of the mapped VLinks (Line 48). Upon mapping
all the VLinks of a VN, Alg. 1 returns nmap, emap, backup,
and S representing the VNode mapping, VLink mapping,
backup VPaths, and spare backup capacities, respectively.

B. Reconfiguring the Allocated Spare Backup Bandwidth

The last phase (Alg. 3) of our heuristic employs different
techniques to further optimize the spare capacity allocation.
Since Alg. 1 performs spare capacity assignment and embed-
ding of VLinks sequentially based on some estimation, it is
possible that spare capacity of initial VLinks may have been
allocated using partial backup VPath selection and VLink
embedding information. Once complete information is avail-
able, sharing of spare capacity can be further enhanced by
taking into account SRGs of different failure scenarios and
backup VPath multiplexing combinations [47], [48]. Due to
space constraints, Alg. 3 illustrates the spare capacity opti-
mization for only single (i.e., K = 1) and double (i.e., K = 2)
link failure scenarios. Techniques similar to [47] and [48] can
be adopted to optimize spare capacity for higher (i.e., K > 2)
failure scenarios albeit the expected huge number of SRG and
VPath multiplexing combinations.

For single SLink failure, Alg. 3 leverages p-cycle based
protection to optimize the spare backup bandwidth Sûv̂ for
each mapped VLink (û, v̂) ∈ Ê [49]. Alg. 3 first finds the
longest cycle R̂ in Ĝ such that no pairs of VLinks in R̂ share
an SLink in their mappings (Line 4). Recall from § III-D
that each (x̂, ŷ) ∈ R̂ belongs to distinct SRGs for K = 1.
Therefore, Alg. 3 allocates the maximum of the demands of all
the VLinks in R̂ to each Sx̂ ŷ ∈ R̂ (Line 6). It then recomputes
backup VPath backupûv̂ for each (û, v̂) ∈ Ê using a process
similar to Alg. 2. However, Alg. 3 utilizes VLink embedding
information to better compute the backup VPaths. It does so
by setting ∞ as the weight of the VLink (x̂, ŷ) if (û, v̂) and

Algorithm 3: Reconfigure Spare Capacities of All VLinks

1 function UpdateBackup(Ĝ, backup, S RG, K )
2 if K = 1 then
3 foreach (û, v̂) ∈ Ê do Sû v̂ ← 0
4 R̂← longest cycle in Ĝ such that no VLink pair

in R̂ shares an SLink on their mapped SPaths
5 foreach (x̂, ŷ) ∈ R̂ do
6 Sx̂ ŷ ← max∀(û,v̂)∈R̂{bûv̂}
7 foreach (û, v̂) ∈ Ê do
8 foreach (x̂, ŷ) ∈ Ê \ {(û, v̂ )} do
9 if S RGû v̂ = S RGx̂ ŷ then Weightx̂ ŷ ←∞

10 else if Sx̂ ŷ ≥ bûv̂ then Weightx̂ ŷ ← 1
11 else Weightx̂ ŷ ← (bûv̂ − Sx̂ ŷ)
12 Weightûv̂ ←∞
13 backupûv̂ ← CWSP(Ĝ, û, v̂ , bûv̂ , Weight)
14 foreach (x̂, ŷ) ∈ backupûv̂ do
15 Sx̂ ŷ ← max(Sx̂ ŷ, bûv̂ )
16 else if K = 2 then
17 foreach ((û, v̂), (â, b̂)) ∈ Ê × Ê s.t. (û, v̂) �= (â, b̂)

do
18 if ({(û, v̂) ∩ backupest

âb̂
(1)} = φ and

{(â, b̂) ∩ backupest
ûv̂

(1)} = φ and
{Qûv̂ ∩ Qâb̂} = φ) then

19 foreach (x̂, ŷ) ∈ backupest
ûv̂

(1) do
20 if (x̂, ŷ) ∈ backupest

âb̂
(2) then

21 Tx̂ ŷ .DeQueue(min(bûv̂ , bâb̂))
22 Sx̂ ŷ ←

∑
0≤i<min(K , Tx̂ ŷ .Size()) Tx̂ ŷ[i ]

23 foreach (x̂, ŷ) ∈ backupest
ûv̂

(2) do
24 if (x̂, ŷ) ∈ backupest

âb̂
(1) then

25 Tx̂ ŷ .DeQueue(min(bûv̂ , bâb̂))
26 Sx̂ ŷ ←

∑
0≤i<min(K , Tx̂ ŷ .Size()) Tx̂ ŷ[i ]

27 foreach (x̂, ŷ) ∈ backupest
ûv̂

(2) do
28 if (x̂, ŷ) ∈ backupest

âb̂
(2) then

29 Tx̂ ŷ .DeQueue(min(bûv̂ , bâb̂))
30 Sx̂ ŷ ←

∑
0≤i<min(K , Tx̂ ŷ .Size()) Tx̂ ŷ[i ]

31 return {backup, S}

(x̂, ŷ) are in the same SRG (Line 9). Alg. 3 also enhances the
spare capacity sharing by setting unit weights to the VLinks
having already assigned spare capacities (Line 10). Alg. 3 then
invokes CWSP procedure with the weight function to compute
backupûv̂ (Line 13). Finally, Sx̂ ŷ for each (x̂, ŷ) ∈ backupûv̂

is updated accordingly (Line 15).
For two SLink failures, Alg. 3 utilizes backup VPath

multiplexing to optimize spare backup bandwidth
allocation [47], [48]. Backup multiplexing is based on
the observation that not all backup VPaths are used
simultaneously for certain failure scenarios, thus allowing to
share the spare bandwidth allocated to the common VLinks
in those VPaths. For instance, if two VLinks (û, v̂) ∈ Ê and
(â, b̂) ∈ Ê do not share any SLink in their SPaths and none
of (û, v̂) and (â, b̂) is present in the first backup VPaths of
the other one, two SLink failures can only impact either both
(û, v̂) and (â, b̂) or one of (û, v̂) and (â, b̂) and one of the
VLinks in the first backup VPaths of (û, v̂) and (â, b̂). In the
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Fig. 4. Impact of SN size on single link failure protection.

first case, both the first VPaths of (û, v̂) and (â, b̂) are used
together, whereas only the second VPath of either (û, v̂) or
(â, b̂) is used in the second case. Therefore, the first VPath of
(û, v̂) (or (â, b̂)) and the second VPath of (â, b̂) (or (û, v̂ ))
are not used together. The same is true for both the second
VPaths of (û, v̂) and (â, b̂). Alg. 3 exploits such observations
by reducing the spare bandwidths of the common VLinks in
those VPaths that will not be used simultaneously for two
SLink failure scenarios (Line 17− 30).

C. Running Time Analysis

CWSP procedure is the core of both Alg. 1 and Alg. 3.
CWSP procedure is implemented using a modified Dijkstra’s
shortest path algorithm that takes into account the constraints
and weights as depicted above. Dijkstra’s algorithm using a
min-priority queue on G runs in O(|E | + |V | log |V |) time.
CWSP is invoked O(|V̂ |Lδ2) times in Alg. 1, where L and δ
are the maximum size of a location constraint set and maxi-
mum degree of a VNode, respectively. Therefore, the overall
running time of the heuristic is O(|V̂ |Lδ2(|E |+ |V | log |V |)).

VI. EVALUATION

We first describe the simulation setup and compared
approaches in § VI-A. The performance metrics are defined
in § VI-B. Finally, we describe our evaluation results focusing
on: (i) evaluation for single link failure scenarios (§ VI-C), (ii)
performances of double link failure scenarios (§ VI-E), and
(iii) Comparison with Existing SN level survivability (§ VI-D).

A. Simulation Setup

We implement Opt-ILP, Max-ILP, and Min-ILP from § IV
using IBM ILOG CPLEX libraries and compare them with a
C++ implementation of the heuristic algorithm, referred as
Heuristic from now on. For each simulation run, we generate
an SN and 5 random VNs. For each SN, we take the mean
value of each performance metric over the 5 VNs. For single
failure scenarios (K = 1), SN and VN size is varied between
20 and 100 nodes and 3 and 11 nodes, with increments
of 10 and 2, respectively. We change the connectivity of both
SNs and VNs by varying the link to node ratio (LNR) from
1.12 to 3.00 and from 1.0 to 2.17, respectively to match with
realistic topologies [50], [51]. We make sure VNs are 2- and
3-edge connected to survive single and double link failures,
respectively. For double failure cases (K = 2), we start with
VNs of size 4 since there is no simple graph of size less

than 4 that has 3-edge connectivity. For K = 2, we vary
VN sizes on an SN with size 25 and LNR 1.8. We also
compare performances of Heuristic for K = 1 and K = 2 in
large scale topologies. In these cases, VN sizes vary between
10 and 100 nodes with 21 and 285 links on SNs with 500 and
1000 nodes with 2016 and 4022 links. Given the number
of nodes and links of a problem instance, the source and
destination of an SLink or a VLink are decided randomly.
Location constraints of VNodes are chosen randomly, and
VLink demands are set to 10% of the SLink bandwidths. Sim-
ulations are performed on a machine with 2×8-core 2.0 Ghz
Intel Xeon E5-2650 processors and 256GB of RAM.

B. Performance Metrics

1) Cost: The cost of embedding a VN computed using (20).
We set a unit cost for allocating bandwidth on an SLink,
therefore, (20) directly represents resource consumption.

2) Mean SPath Length: The mean length of the SPath used
to map a VLink of a VN.

3) Mean VPath Length: The mean length of the VPath used
as a backup path for a VLink in a VN.

4) Execution Time: The time required for an algorithm to
find an embedding of a VN.

C. Evaluation Results for Single SLink Failure Scenarios

1) Impact of SN Topology: Fig. 4 presents performance
metrics for different SN sizes, while keeping the VN size and
SN LNR fixed at 5 and 1.8, respectively. Since SNode degrees
remain the same, SN diameters increase with increasing SN
size. We see that embedding costs in Fig. 4(a) increase
for all the compared approaches with increasing SN size.
This stems from the fact that the location constraints of
the VNodes of a VN are chosen to be far apart from one
another in an SN with larger diameter. This behavior is verified
in Fig. 4(b) that shows the increase in SPath lengths with the
increase in SN sizes. Longer SPaths require higher amount
of substrate resources for embedding the VLinks of a VN,
hence, the higher cost. Another takeaway from Fig. 4(b) is that
mean SPath lengths of Min-ILP and heuristic are the lowest
and highest, respectively. Min-ILP selects shorter SPaths for
embedding VLinks because of the lower number of disjoint
path constraints imposed by the shorter VPaths as shown
in Fig. 4(c). Min-ILP prefers the shorter VPaths since it has
to allocate dedicated spare capacity on all the VLinks in a
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Fig. 5. Impact of SN density on single link failure protection.

Fig. 6. Impact of VN size on single link failure protection.

Fig. 7. Impact of VN density on single link failure protection.

VPath. In contrast, all other approaches choose longer VPaths
to maximize the spare capacity sharing on VLinks.

Fig. 5 presents the impact of SN density on the performance
metrics by varying SN LNRs. For very sparse SNs, i.e., SNs
with very low LNRs, Max-ILP and heuristic fail to find
sufficient disjoint SPaths, imposed by the SRG constraints,
resulting in infeasible solutions. However, Opt-ILP and Min-
ILP are able to find solutions with very high costs by reducing
the number of SRGs (Fig. 5(a)). Lower number of SRGs,
in turn, reduces the opportunities of spare capacity sharing on
VPaths. Despite reducing SRGs, Opt-ILP and Min-ILP still
have to find disjoint SPaths to satisfy survivability constraints.
In a sparse SN, a set of disjoint SPaths between pairs of
SNodes becomes significantly longer than the set of non-
disjoint SPaths between the same pairs of SNodes. These
aforementioned factors contribute to the higher embedding
costs for sparse SNs. As SN LNR increases, the number
and length of the SPaths (also disjoint SPaths) increase and
decrease, respectively, hence the decrease in mean SPath
lengths in Fig. 5(b). As a consequence, cost decreases for
all the approaches as shown in Fig. 5(a). Fig. 5(c) shows
that mean VPath lengths for all the approaches except Min-
ILP increase initially with increasing SN LNR. When VPath
lengths get closer to the VN diameter in these approaches,
they remain almost constant with increasing SN LNR. The
initial increase in mean VPath length is due to the use of

the same VLinks by more VPaths, leading to more spare
capacity sharing. However, sparse SNs cannot satisfy the
SRG constraints imposed by longer VPaths, therefore, all the
approaches except Min-ILP select shorter VPaths. Since Min-
ILP does not allow any spare capacity sharing, there is little
impact of SN density on VPath lengths.

2) Impact of VN Topology: Fig. 6 presents performance
metrics for different VN sizes, while keeping the SN size, SN
LNR, and VN LNR fixed at 50, 1.82, and 1.4, respectively.
Fig. 6(a) shows that cost increases as VN size gets larger.
This is partially due to the allocation of more SN resources
for embedding higher number of VLinks of a larger VN. The
other contributor is the longer embedding SPath as shown
in Fig. 6(b). SPath length increases with VN size to find the
higher number of disjoint SPaths that are required to satisfy the
higher number of SRG and survivability constraints induced
by longer VPaths shown in Fig. 6(c). In case of Min-ILP,
VPath lengths increase due to rise in VN diameter resulting
from increase in VN size. The other approaches select even
longer VPaths to enable more spare capacity sharing on the
VLinks of the selected VPaths.

Fig. 7 compares performance metrics by varying the
VN LNR, while keeping the SN size, SN LNR, and VN size
fixed at 50, 1.82, and 6, respectively. The takeaway from
Fig. 7(a), Fig. 7(b), and Fig. 7(b) is that both cost and
mean SPath length increase with increasing VN LNR, whereas



SHAHRIAR et al.: VN SURVIVABILITY THROUGH JOINT SPARE CAPACITY ALLOCATION AND EMBEDDING 515

Fig. 8. Scalability analysis for single link failure protection.

mean VPath length shows an opposite trend. We explain these
behaviors as follows. The sparsest connected VN is a ring
topology. In such a topology, each VLink (û, v̂) has exactly
one VPath that contains all the other VLinks in the ring except
(û, v̂), and all the VLinks in the ring have to be embedded
disjointedly to satisfy the survivability constraints. Hence, all
the approaches have the same mean VPath length for the
sparsest VN, i.e., VN with the lowest LNR. The results of
ring VNs also illustrate that Min-ILP allocates ∼ 3 times extra
resources to guarantee the same level of survivability provided
by the other approaches. As VN LNR increases, Min-ILP
prefers the shortest possible VPaths to minimize the amount
of additional resources. Other approaches strike a balance
between reducing disjoint path requirements for satisfying
survivability constraints and increasing spare capacity sharing
as well as disjoint path requirements of SRG constraints
induced by shorter and longer VPaths, respectively. Hence,
the mean VPath lengths of all the approaches leveraging spare
capacity sharing decrease much slower than those of Min-ILP,
which does not allow any sharing. Despite a decrease in VPath
lengths as VN LNR increases, all the approaches except Min-
ILP have to satisfy higher number of SRG constraints to enable
more spare capacity sharing. This contributes to the increasing
trend of cost and mean SPath length.

3) Discussion of Results for Max-ILP and Min-ILP: As
we see in Fig. 4-8, Max-ILP closely approximates Opt-ILP,
whereas Min-ILP provides the upper bound of cost. The
proximity between Max-ILP and Opt-ILP can be explained
using the analysis presented in § IV-C.3 and mean SPath
length values. Since SPath lengths of Max-ILP are always
less than twice the SPath lengths of Min-ILP, Max-ILP yields
the lower cost. Hence, for embedding a VLink, Opt-ILP
prefers spare capacity sharing of Max-ILP than dedicated
spare capacity allocation of Min-ILP. Despite the sequential
nature of Heuristic, its performance remains closer to those of
Max-ILP than Min-ILP. Specifically, compared to Max-ILP,
Heuristic provisions ∼21% additional resources on average.

4) Scalability Analysis: Fig. 8 demonstrates the scalability
of the compared approaches by plotting execution times in
logarithmic scale. As we can see, Opt-ILP only scales to
very small networks. The reduction in problem complexities
in terms of constraints and variables in Max-ILP and Min-
ILP are reflected in their ability to scale to larger problem
instances than Opt-ILP. Among them Min-ILP has to satisfy
the lowest number of disjoint path constraints. It explores a
much larger solution space than Max-ILP, requiring more time.

Following our discussion on problem complexities in § IV-C,
VN dimension has a more profound impact on the scalability
of the ILP-based approaches than SN dimension. We observe
this impact in Fig. 8(c) and Fig. 8(d) that show, with our
current hardware, the ILP-based approaches hit ceilings in
terms of VN size or VN LNR. Even for the successful cases,
the ILP-based approaches require several orders of magnitude
more time to solve similar problem instances compared to
Heuristic that can scale to much larger problem instances.

D. Comparison With Existing SN Level Survivability [13]

One of the key motivations for embedding a VN augmented
with spare capacity is the hypothesis that more resource
efficient embedding is possible with protection at the VN layer
compared to doing the same at the SN layer. We provide a
quantitative comparison to support this hypothesis. For this
scenario, we have explored the SVNE literature to find a
representative VN embedding approach that adopts SN level
shared spare capacity allocation and found the proposal in [13]
as the closest match. However, Chenet al. [13] only provide
a heuristic algorithm that yields suboptimal solutions. Hence,
we have formulated an ILP, namely SN-ILP, following the
concepts presented in [13] for solving the exact problem of
VN embedding with SN layer shared spare capacity allocation
and used it as a baseline for comparison. We implement
SN-ILP using IBM ILOG CPLEX library. For each VLink
in a VN, SN-ILP allocates SN resources on a primary and a
backup SPath disjoint from the primary. However, the spare
capacity allocated on the backup SPaths can be shared among
the VLinks whose primary SPaths are edge disjoint. For a fair
comparison, we juxtapose the performance metrics of SN-ILP
with those of our ILP formulations that share spare capacity,
i.e., Opt-ILP and Max-ILP in Fig. 9. Fig. 9(a) reveals that,
similar to Max-ILP, SN-ILP yields infeasible solutions for
sparse SNs due to lack of path diversity. In all the cases
when SN-ILP is able to find a solution as shown in Fig. 9(a)
and Fig. 9(c), SN-ILP incurs higher costs than both Opt-ILP
and Max-ILP. In these cases, SN-ILP allocates, on average,
∼33% additional resources compared to Max-ILP. We explain
this behavior with the help of Fig. 9(b) and Fig. 9(d). These
figures show that both primary and backup SPath lengths
of SN-ILP exceed SPath lengths of Opt-ILP and Max-ILP.
This is due to the fact that finding a pair of disjoint SPaths
between a pair of SNodes is more difficult than finding an
SPath that is disjoint from a set of SPaths between different
set of SNodes [52]. Another reason for lower costs of Opt-ILP
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Fig. 9. Comparison with SN level survivability of [13].

Fig. 10. Performance of heuristic with single (K = 1) and double (K = 2) link failure protections on large scale test cases.

TABLE I

EVALUATION RESULTS FOR DOUBLE (K = 2) LINK FAILURES

and Max-ILP compared to SN-ILP is that Opt-ILP and Max-
ILP employ more spare capacity sharing on the VPaths than
spare capacity sharing on the SPaths employed by SN-ILP.

E. Evaluation Results for Multiple Link Failure Scenarios

1) Small Scale Performance: Table I compares the perfor-
mances of ILP formulation presented in § IV-D and Heuristic
for K = 2. As evident from the table, the ILP formulation does
not scale beyond 5 node VNs due to the combinatorial number
of constraints for K = 2. On the other hand, Heuristic scales
to larger topologies at the expense of incurring higher cost.
As seen in the table, the higher cost of Heuristic than ILP is
attributed to the longer SPaths for embedding VLinks and less
sharing of spare capacity along shorter VPaths. Nonetheless,
the average cost of Heuristic remains within 20% of the ILP.

2) Large Scale Performance: In Fig. 10, we present the
performances of the Heuristic with K = 1 and K = 2
for large scale topologies, where multiple failures are more
likely to occur [28], [50]. Fig. 10(a) shows that cost increases
proportionally with the increase in VN size, following the
same trend observed in Fig. 6(a). The ∼ 100% increase in
embedding cost of K = 2 from K = 1 is due to the increase
in spare backup bandwidth requirements to survive double
link failures. The slightly higher embedding cost for an SN
with 1000 nodes than for an SN with 500 nodes in both
K = 1 and K = 2 cases is due to the increase in SN
diameter similar to the cases in Fig. 4(a). The increase in

SN diameter is reflected in Fig. 10(b) that shows SPaths are
longer in a 1000 node SN than in the 500 node one. Different
behavior is observed in Fig. 10(c) that shows VPath lengths
of K = 1 are much larger than those of K = 2. This is due
to adopting different reconfiguration strategies for different
failure scenarios by Alg. 3. For K = 1, the goal of Alg. 3
is to assign spare bandwidth along the longest p-cycle, thus
resulting in longer VPaths. Such strategy can be expensive
for K > 1, since K disjoint p-cycles are needed to survive
K SLink failures. Furthermore, p-cycle based strategy offers
less room for spare capacity sharing for K > 1, as two
VLinks on the p-cycle are on the backup VPaths of each
other. Therefore, for K = 2, Alg. 3 prefers shorter VPaths
as shown in Fig. 10(c) and optimizes spare capacity through
backup multiplexing technique described in Alg. 3. Finally,
Fig. 10(d) shows that our Heuristic is able to find solutions
within a reasonable time limit in compliance with the running
time analysis presented in § V-C.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have studied the SVNE problem that arises
in network virtualization a.k.a. network slicing from a new
perspective. Instead of managing failure survivability at the SN
level, we have proposed to delegate the failure management
tasks to the VN level in support of more autonomous VNs.
Hence, a new variety of SVNE problem emerges that requires
a VN to be augmented with sufficient spare backup capacity
and embedded on the SN accordingly to ensure survivability
against multiple substrate link failures. For the case of single
substrate link failure, we have formulated the optimal solution
to this joint optimization problem as a QIP and transformed
it into an ILP. We have presented simplified ILP formulations
to solve special cases of the problem and presented a math-
ematical study to analyze the impact of SN topology on the
level of spare capacity sharing. We have then extended the
most resource efficient ILP formulation for single link failure
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to handle the case of multiple substrate link failures. We have
also proposed a heuristic algorithm to tackle the computational
complexity of the ILP formulations. The heuristic algorithm
provides a generic framework to survive multiple link failures
and demonstrates spare capacity optimization techniques for
single and double link failure scenarios.

We have performed simulations to evaluate our solutions
for single and double link failure scenarios. Simulation results
show that ILP formulations for the two special cases can
provide upper and approximately lower bounds of the solution
spectrum. Moreover, the heuristic allocates ∼21% additional
resources compared to the approximated lower bound, while
executing several orders of magnitude faster. Large scale
simulations of the heuristic algorithm shows that protection
against double link failures comes at the cost of nearly two
times of the resources incurred by protection against single
link failures. A quantitative comparison between the SVNE
with VN level protection and the traditional SVNE with
SN level protection reveals that the former can save ∼33%
resources on average, compared to those required by the latter.

In the future, we plan to extend this work to virtual fabrics
where the bandwidth requirement is expressed as pairwise
bandwidth rather than as per link bandwidth requirement.
We intend to study the resource allocation challenges to ensure
survivability at the fabric level compared to doing the same at
the VN level. We also plan to extend the failure scenario to
consider multiple substrate node failures.
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