
Computing a Longest Common Palindromic
Subsequence

Shihabur Rahman Chowdhury, Md. Mahbubul Hasan, Sumaiya Iqbal, and M.
Sohel Rahman

A`EDA group
Department of CSE, BUET, Dhaka - 1000, Bangladesh

{shihab,mahbub86,sumaiya,msrahman}@cse.buet.ac.bd

Abstract. The longest common subsequence (LCS) problem is a classic and
well-studied problem in computer science. Palindrome is a string, which reads
the same forward as it does backward. The longest common palindromic sub-
sequence (LCPS) problem is an interesting variant of the classic LCS problem
which finds the longest common subsequence between two given strings such
that the computed subsequence is also a palindrome. In this paper, we study the
LCPS problem and give efficient algorithms to solve this problem. To the best of
our knowledge, this is the first attempt to study and solve this interesting problem.

Keywords: longest common subsequence, palindromes, dynamic programming,
range query

1 Introduction

The longest common subsequence (LCS) problem is a classic and well-studied
problem in computer science with a lot of variants arising out of different prac-
tical scenarios. In this paper, we introduce and study the longest common palin-
dromic subsequence (LCPS) problem: given a pair of strings X and Y over the
alphabet Σ, the goal of the LCPS problem is to compute a LCS Z of X and Y
such that, Z is a palindrome. In what follows, for the sake of convenience we
will assume, that X and Y have equal length, n. But our result can be easily
extended to handle two strings of different length.

String and sequence algorithms related to palindromes have attracted stringol-
ogy researchers since long [2, 4, 6–8]. The LCPS problem also seems to be a new
interesting addition to the already rich list of problems related to palindromes.
To the best of our knowledge, there exists no research work in the literature
on computing longest common palindromic subsequences. However, the prob-
lem of computing palindromes and variants in a single sequence has received
much attention in the literature. Manacher discovered an on-line sequential al-
gorithm that finds all ‘initial’1 palindromes in a string [7]. Gusfield gave a linear-

1 A string X[1 . . . n] is said to have an initial palindrome of length k if the prefix S[1 . . . k] is a
palindrome.

time algorithm to find all ‘maximal’ palindromes in a string [3]. Authors in [8]
solved the problem of finding all palindromes in SLP (Straight Line Programs)-
compressed strings. Very recently, Tomohiro et. al. worked on pattern matching
problems involving palindromes [9].

In this paper, we propose two methods for finding an LCPS, given two
strings. Firstly we present a dynamic programming algorithm to solve the prob-
lem with time complexityO(n4), where n is the length of the strings (Section 3).
Then, we present another algorithm that runs in O(R2 log2 n log log n) time
(Section 4). Here, the set of all ordered pair of matches between two strings
is denoted by M and |M| = R. Due to space constraints all the proofs are
omitted.

2 Preliminaries

We assume a finite alphabet, Σ. For a string X , we denote its substring xi . . . xj
(1 ≤ i ≤ j ≤ n) by Xi,j . For two strings X and Y , if a common subsequence
Z of X and Y is a palindrome, then Z is said to be a common palindromic
subsequence (CPS). A CPS of two strings having the maximum length is called
the Longest Common Palindromic Subsequence (LCPS) and we denote it by
LCPS(X,Y). The set of all matches between two strings X and Y is denoted
byM and it is defined as,M = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n and xi = yj}.
And we have, |M| = R. We define,Mσ as a subset ofM such that all matches
within this set match to a single character σ ∈ Σ. We have |Mσ| = Rσ. Each
member ofMσ is called a σ-match.

3 A Dynamic Programming Algorithm

We observe that the natural classes of sub-problems for LCPS correspond to
pairs of substrings of the two input sequences. Based on this observation we
present the following theorem which proves the optimal substructure property
of the LCPS problem.

Theorem 1. Let X and Y are two sequences of length n, and Xi,j and Yk,` are
two substrings of X and Y respectively. Let Z = z1z2 . . . zu be the LCPS of the
two substrings, Xi,j and Yk,`. Then, the following statements hold,

1. If xi = xj = yk = y` = a (a ∈ Σ), then z1 = zu = a and z2 . . . zu−1 is an
LCPS of Xi+1,j−1 and Yk+1,`−1.

2. If xi = xj = yk = yl condition does not hold then, Z is an LCPS of (Xi+1,j

and Yk,`) or (Xi,j−1 and Yk,`) or (Xi,j and Yk,`−1) or (Xi,j and Yk+1,`).

Based on Theorem 1 we give the following recursive formulation for the length
of LCPS(X,Y):

lcps[i, j, k, `] =



0 i > j or k > `

1 (i = j and k = `)
and
(xi = xj = yk = y`

2 + lcps[i+ 1, j − 1, k + 1, `− 1] (i < j and k < `)
and
xi = xj = yk = y`

max(lcps[i+ 1, j, k, `], lcps[i, j − 1, k, `],

lcps[i, j, k + 1, `], lcps[i, j, k, `− 1]) (i ≤ j and k ≤ `)
and
(xi = xj = yk = y`)
does not hold

(1)
lcps[i, j, k, `] is the length of the LCPS ofXi,j and Yk,`. The length ofLCPS(X,Y)
will be stored at lcps[1, n, 1, n]. We can compute this length in O(n4) time us-
ing a bottom up dynamic programming.

4 A Second Approach

We shall first reduce our problem to a geometry problem and then solve it with
the help of modified version of range tree data structure. First, we make the
following claim.

Claim 1 Any common palindromic subsequence Z = z1z2 . . . zu of two strings
X and Y can be decomposed into a set of σ-match pairs (σ ∈ Σ).

It follows from Claim 1 that constructing a CPS of X and Y can be seen as
constructing an appropriate set of σ-match pairs between them. An arbitrary
σ-match pair, 〈(i, k), (j, `)〉 (say m1), from among all σ-matche pairs between
X and Y , can be seen as inducing a substring pair in them. Now we want to
construct a CPS Z with length u, placing m1 at the two ends of Z. Clearly
we have z1 = zu = xi = xj = yk = y`. To compute Z, we will have to
recursively select σ-match pairs between Xi,j and Yk,`. This will yield a set of
σ-matche pairs corresponding to Z. If we consider all possible σ-match pairs as
the two end points of Z, then the longest one obtained will be an LCPS of X
and Y . Each match between X and Y can be visualized as a point on a n × n

rectangular grid with integer coordinates. Any σ-match pair defines two corner
points of a rectangle and thus induces a rectangle in the grid. Now, our goal is
to take a σ-matche pair as the two ends of a CPS and recursively construct the
set of σ-matche pairs from within the induced rectangle. In particular we take
the following steps to compute LCPS(X,Y):

1. Identify an induced rectangle (say Ψ1) by a pair of σ-matches. Then, pair up
σ-matches within Ψ1 to obtain another rectangle (say Ψ2) and so on until we
encounter either of the following two terminating conditions:

T1. If there is no point within any rectangle. This corresponds to the case
when there is no match between the substrings.

T2. If it is not possible to take any pair of σ-matches within any rectangle.
In this case we pair a match with itslef, it corresponds to the single
character case in our Dynamic Programming solution.

2. We repeat the above step for all possible σ-match pairs (∀σ ∈ Σ). At this
point, we have a set of nested rectangle structures. An increase in the nesting
depth of the rectangle structures as it is being constructed, corresponds to
adding a pair of symbols2 to the resultant palindromic subsequence. Hence,
the set of rectangles with maximum nesting depth gives us an LCPS.

Now the problem reduces to the following interesting geometric problem: Given
a set of nested rectangles defined by the σ-match pairs ∀σ ∈ Σ, we need to find
the set of rectangles having the maximum nesting depth. We refer to this problem
as the Maximum Depth Nesting Rectangle Structures (MDNRS) problem.

We assume, without the loss of generality that (i, k) and (j, `) correspond
to the lower left corner and upper right corner of the rectangle Ψ〈(i, k), (j, `)〉.
Now, a rectangle Ψ ′(〈(i′, k′), (j′, `′)〉) will be nested within rectangle Ψ(〈(i, k), (j, l)〉)
iff the following condition holds:

i′ > i and k′ > k and j′ < j and `′ < `⇔ (i′, k′,−j′,−`′) > (i, k, j, `).
Now we convert a rectangle Ψ(〈(i, k), (j, `)〉) to a 4-D pointPΨ (i, k,−j,−`)

and say that, a point (x, y, z, w) is chained to another point (x′, y′, z′, w′) iff
(x, y, z, w) > (x′, y′, z′, w′). Then, a rectangle Ψ ′(〈(i′, k′), (j′, `′)〉), is nested
within a rectangle Ψ(〈(i, k), (j, `)〉) iff the point PΨ ′(i′, k′,−j′,−`′) is chained
to the point PΨ (i, k,−j,−`). Hence, the MDNRS problem in 2-D reduces to
finding the set of corresponding points in 4-D having the maximum chain length.We
refer to this problem as Maximum Chain Length (MCL) Problem. We solve the
MCL problem in O(R2 log2 n log logn) time using a modified version of 3-D
range tree data structure [1]. A d-dimension range tree, T is in the form of multi-
level trees using an inductive definition on d. Any update and query operation
in T can be done in O(logd n) time. So in 3-D, our query and update performs

2 If condition T2 is reached, only a symbol shall be added.

in O(log3 n) time where the array is of n × n × n size. We process the 4-D
points (x, y, z, w) in non-increasing order of the highest dimension w. For each
point (x, y, z, w) we query in T for maximum value at (x′, y′, z′) where x′ > x,
y′ > y and z′ > z. The obtained value is incremented and stored at the point
(x, y, z). We can update the value at (x, y, z) in 3-D Range tree and query for the
maximum in O(log3 n) time. For the O(R2) points it will take O(R2 log3 n)
time to solve the MCL problem. In the deepest level of our range tree we are
doing a 1-D range maximum query, with the query range always having the
form [x, n]. According to Rahman et. al. such queries can be answered using
a Van Emde Boas data structure in O(log log n) time [5]. Using this technique,
the running time to solve the MCL (which in turn solves the LCPS problem)
problem reduces to O(R2 log2 n log logn).

5 Conclusion and Future Works

We have presented a O(n4) time dynamic programming algorithm for solving
the LCPS problem. Then, we have identified and studied some interesting rela-
tion of the problem with computational geometry. Then we solved the problem
using a modified range tree data structure inO(R2 log2 n log logn) time. How-
ever, our results can be easily extended for the case where the two input strings
are of different lengths. Further research can also be carried out towards study-
ing different other variants of the LCPS problem.

References
1. Bentley, J.L., Friedman, J.H.: Data structures for range searching. ACM Comput. Surv. 11,

397–409 (December 1979)
2. Breslauer, D., Galil, Z.: Finding all periods and initial palindromes of a string in parallel.

Algorithmica 14, 355 – 366 (October 1995)
3. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-

tional Biology. Cambridge University Press, New York
4. Hsu, P.H., Chen, K.Y., Chao, K.M.: Finding all approximate gapped palindromes. In: Pro-

ceedings of 20th International Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December
16-18, 2009. pp. 1084 – 1093 (2009)

5. Iliopoulos, C., Rahman, M.: A new efficient algorithm for computing the longest common
subsequence. Theory of Computing Systems 45, 355–371 (2009)

6. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theoretical Computer Sci-
ence pp. 5365 – 5373 (November 2009)

7. Manacher, G.: A new linear-time on-line algorithm for finding the smallest initial palindrome
of a string. Journal of the ACM 22, 346 – 351 (July 1975)

8. Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto, K.: Efficient
algorithms to compute compressed longest common substrings and compressed palindromes.
Theoretical Computer Science 410, 900–913 (March 2009)

9. Tomohiro, I., Shunsuke, I., Masayuki, T.: Palindrome pattern matching. In: Proceedings of
22nd Annual Symposium, CPM 2011, Palermo, Italy, June 27-29, 2011. pp. 232 – 245 (2011)

