
MULE: Multi-Layer Virtual Network Embedding
Shihabur Rahman Chowdhury∗, Sara Ayoubi∗, Reaz Ahmed∗, Nashid Shahriar∗, Raouf Boutaba∗,

Jeebak Mitra†, and Liu Liu‡
∗David R. Cheriton School of Computer Science, University of Waterloo

{sr2chowdhury | sayoubi | r5ahmed | nshahria | rboutaba}@uwaterloo.ca
†Huawei Technologies Canada Research Center

jeebak.mitra@huawei.com
‡Huawei Technologies

liuliu1@huawei.com

Abstract—Network Virtualization (NV), considered as a key
enabler for overcoming the ossification of the Internet allows
multiple heterogeneous virtual networks to co-exist over the
same substrate network. Resource allocation problems in NV
have been extensively studied for single layer substrates such
as IP or Optical networks. However, little effort has been put
to address the same problem for multi-layer IP-over-Optical
networks. The increasing popularity of multi-layer networks for
deploying backbones combined with their unique characteristics
(e.g., topological flexibility of the IP layer) calls for the need to
carefully investigate the resource provisioning problems arising
from their virtualization. In this paper, we address the problem
of MUlti-Layer virtual network Embedding (MULE) on IP-over-
Optical networks. We propose two solutions to MULE: an Integer
Linear Program (ILP) formulation for the optimal solution and a
heuristic to address the computational complexity of the optimal
solution. We demonstrate through extensive simulations that on
average our heuristic performs within ≈1.47× of optimal solution
and incurs ≈66% less cost than the state-of-the-art heuristic.

I. INTRODUCTION

Multi-layer IP-over-Optical networks are becoming a popu-
lar choice among Infrastructure Providers (InPs) for deploying
wide area networks [1]. Such multi-layer network typically
consists of an optical substrate for the physical communication
with an IP overlay on top [2]. This network model is being
increasingly adopted for backbone networks as it offers the
best of both worlds, i.e., the flexibility in addressing, resource
allocation, and traffic engineering of IP networks along with
the high capacity provided by optical networks. Despite their
increasing popularity, research on addressing resource pro-
visioning challenges for virtualizing such networks is still
in its infancy. A classical resource provisioning problem in
network virtualization is Virtual Network Embedding (VNE),
which consists in establishing a Virtual Network (VN) on a
Substrate Network (SN) with objectives such as minimizing
resource provisioning cost [3], [4], maximizing the number
of admitted VNs [5], etc. VNE has been extensively studied
for single-layer SNs [6] with significantly lesser attention
paid to the multi-layer network substrates [7]. The topological
flexibility provided by multi-layer networks [8] poses some
unique challenges for VNE and calls for new investigations.

Similar to multi-layer networks, Mule, a hybrid species brings the best of
two species together.

Several deployment models exist for multi-layer IP-over-
Optical networks [9] including but not limited to: (i) IP over
Dense Wavelength Division Multiplexed (DWDM); (ii) IP
over Optical Transport Network (OTN) over DWDM. DWDM
networks have specific constraints such as wavelength conti-
nuity for optical circuits and typically do not have transparent
traffic grooming capabilities. A more favorable choice (also
our choice of technology) is to deploy an OTN [10] over
a DWDM network with advanced transport capabilities (e.g.,
traffic grooming without optical-electrical-optical conversion).
The OTN in turn can be static, i.e., necessary interfaces on
OTN nodes have been configured and the corresponding light
paths in the DWDM layer have been lit to provision fixed
bandwidth between OTN nodes. Or, the OTN can be dynamic,
i.e., more bandwidth between OTN nodes can be provisioned
by lighting new light paths in the DWDM. Clearly, the
VNE problem for each of these scenarios requires dedicated
explorations due to their unique constraints. As a first step
towards addressing VNE for multi-layer networks, we limit the
scope of this paper to the case of a static OTN and leave the
other possible deployment scenarios for future investigation.

Solving the VNE problem for multi-layer networks exhibits
many unique challenges due to the topological flexibility
offered by such networks. Concretely, although the OTN is
fixed, the IP network is dynamic, i.e., new IP links can be
established when needed by provisioning necessary capacity
from the OTN. Such flexibility can be exploited if residual
resources in the IP layer are insufficient to admit a new VN,
or to reduce the cost of VN embedding by creating new IP
links that reduce network diameter. Provisioning new IP links
in optical networks has been a tedious and manual task with a
long turnaround time. However, with the advances in optical
networking technologies [11] and centralized optical control
plane [12]–[15], such provisioning tasks are more and more
automated. Even then, one should not abuse such capability
to sporadically establish new IP links since it remains more
expensive than embedding virtual links on existing IP links.
In this regard, we are faced with the following challenges: (i)
strike a balance between obtaining a low cost VN embedding
while minimizing the establishment of new IP links; (ii)
simultaneously decide on whether to create an IP link or not
and its embedding in the OTN.

978-3-901882-98-2 c© 2017 IFIP



In this paper, we study the problem of MUlti-Layer Virtual
Network Embedding (MULE) focusing on IP-over-OTN sub-
strate networks with the objective of minimizing total resource
provisioning cost for embedding the VN while considering
the possibility of establishing new IP links when necessary.
Specifically, the contributions of this paper are as follows:
• OPT-MULE: An Integer Linear Program (ILP) formula-

tion to find the optimal solution to MULE. The state-of-
the-art in multi-layer VNE [7] does not optimally solve
the problem. To the best of our knowledge, this is the
first optimal solution to MULE.

• FAST-MULE: A heuristic to tackle the computational
complexity of OPT-MULE. We also prove that our
heuristic solves the problem optimally for a specific class
of VNs, i.e., star-shaped VNs. Further, we evaluate our
heuristic and compare it against the optimal solution and
with the state-of-the-art solution in the literature [7].

The rest of the paper is organized as follows. We begin with
a discussion of related works in Section II. Then we introduce
our model and formally define the problem in Section III. In
Section IV, we present OPT-MULE, an ILP formulation to
optimally solve MULE, followed by our proposed heuristic,
FAST-MULE in Section V. Our evaluation of the proposed
solutions are presented in Section VI. Finally, we conclude
with some future research directions in Section VII.

II. RELATED WORKS

VNE is a well studied problem in network virtualization
and a significant body of research has solved a number
of its variants [4], [16]–[24]. However, it has been mostly
studied for single layer SNs, i.e., for IP, Optical or Wireless
networks. Despite the existence of a significant number of
proposals [25]–[27], VNE solutions for IP networks commonly
involve allocating compute and bandwidth resources for the
virtual nodes and links, respectively. In the case of optical
networks, solving VNE involves allocating compute resources
and wavelength for virtual nodes and links, respectively [28].
Optical networks have technological constraints such as dis-
crete wavelength allocation, wavelength continuity etc. that
add additional challenges to the VNE problem [29]. The state-
of-the-art in optical network virtualization has mostly focused
on single layer optical networks.

More recently, Zhang et al., proposed a heuristic for solv-
ing the multi-layer VNE problem for IP-over-DWDM net-
works [7]. They also consider the possibility of modifying IP
layer topology by allocating wavelengths from the underlying
DWDM network. Zhang et al., proposed a two step embedding
process that first embeds the virtual nodes then the virtual
links, which limits the solution space and hence the optimality
of the embedding. In contrast, we propose an ILP formulation
for optimally solving the multi-layer VNE problem. Also,
our heuristic does not embed the virtual nodes and links
independently from each other, rather jointly embeds them.

An orthogonal but somehow related area of research in
multi-layer network optimization focused on the issue of
capacity planning in multi-layer networks [29], [30]. During

the initial capacity planning a traffic matrix for the IP layer
is given and sufficient capacity needs to be allocated in both
IP and Optical layers to support that traffic matrix. Different
variants of the problem exist that take different technological
constraints, deployment models, and failure scenarios into
account [31]–[38]. In contrast, the endpoint of the demands,
i.e., virtual node placement, is not known in advance in multi-
layer VNE, making this one a fundamentally different problem
from multi-layer capacity planning. Having said that the
substantial body of research in multi-layer capacity planning
has demonstrated clear advantages of resource allocation when
the layers are jointly optimized as opposed to considering them
in isolation [31], [39]. Our solution approach also takes a joint
optimization approach to the multi-layer VNE problem.

III. MULE: MULTI-LAYER VIRTUAL NETWORK
EMBEDDING PROBLEM

We first present a mathematical representation of the inputs,
i.e., the IP topology, the OTN topology, and the VN request.
Then we formally define MULE.
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Fig. 1. Multi-Layer Infrastructure

A. Substrate Optical Transport Network (OTN)

We represent the substrate OTN as an undirected graph Ĝ =
(V̂ , Ê), where V̂ and Ê are the set of Optical Cross Connects
(OXCs) (referred as OTN nodes in the remaining) and OTN
links, respectively (similar to [33]. Neighbors of an OTN node
û ∈ V̂ are represented with N (û). We assume the OTN to be
fixed, i.e., light paths atop a DWDM layer have been already
lit to provision OTN links (û, v̂) ∈ Ê with bandwidth capacity
bûv̂ . This pre-provisioned bandwidth can be used to establish
IP links between IP routers. The cost of allocating one unit
of bandwidth from an OTN link (û, v̂) ∈ Ê is Cûv̂ . Fig. 1
illustrates an example of an OTN network, where the numbers
on each link represent its residual capacity.

B. Substrate IP Network

The substrate IP network is an undirected graph G′ =
(V ′, E′). Each IP node u′ ∈ V ′ has pu′ number of ports
with homogeneous capacity capu′ . An IP node is connected
to an OTN node through a short-reach wavelength interface.
Attachment between an IP and an OTN node is represented
using a binary input variable τu′û, which is set to 1 only
when IP node u′ is attached to OTN node û. An IP link
is provisioned by establishing an OTN path that connects



its end points. Note that, it is common in operator networks
to establish multiple IP links between the same pair of IP
nodes and bundle their capacities using some form of link
aggregation protocol [40]. We also follow the same practice
and use (u′, v′, i) to represent the i-th IP link between u′ and
v′, where 1 ≤ i ≤ pu′ . We set the binary input variable Γu′v′i

to 1 when IP link (u′, v′, i) is present in G′, 0 otherwise.
Bandwidth of an IP link is represented by bu′v′i. Capacity of
a new IP link (u′, v′, i) is set to min(capu′ , capv′). Fig. 1
illustrates an example IP network, where each IP link is
mapped on an OTN path and the residual bandwidth capacity
of an IP link is represented by the number on that link. The
cost of allocating one unit of bandwidth from an IP link
(u′, v′, i) ∈ E′ is Cu′,v′,i.

C. Virtual Network (VN)
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Fig. 2. Virtual Network

A VN request is an undirected graph Ḡ = (V̄ , Ē), where V̄
and Ē are the set of virtual nodes (VNodes) and virtual links
(VLinks), respectively. We assume online VN arrival, i.e., VNs
arriving one at a time (similar to [5]). Each VLink (ū, v̄) ∈ Ē
has a bandwidth requirement būv̄ . Each VNode ū ∈ V̄ has a
location constraint set L(ū) ⊂ V ′ that represents the set of IP
nodes where ū can be embedded. We represent the location
constraints using a binary input variable `ūu′ , which is set to
1 if IP node u′ ∈ L(ū). Fig. 2 illustrates a VN, where the
number on each link represents VLink demand, and the set
next to each node denotes that VNode’s location constraints.

D. Problem Definition

Given a multi-layer SN composed of an IP network G′ on
top of an OTN network Ĝ, and a VN request Ḡ with location
constraint set L:
• Map each VNode ū ∈ V̄ to an IP node u′ ∈ V ′ according

to the VNode’s location constraint.
• Map each VLink (ū, v̄) ∈ Ē to a path in the IP network.

This path can contain a combination of existing IP links
and newly created IP links.

• Map all newly created IP links to a path in the OTN.
• The total cost of provisioning resources for new IP links

and cost of provisioning resources for VLinks should be
minimized subject to the following constraints:

– IP links cannot be over-committed to accommodate
the VLinks, and

– the demand of a single VLink should be satisfied by
a single IP path.

IV. OPT-MULE: AN ILP FORMULATION

A. Decision Variables

A VLink must be mapped to a path in the IP network. The
following decision variable indicates the mapping between a

VLink (ū, v̄) ∈ Ē and an IP link, (u′, v′, i) ∈ E′.

xūv̄u′v′i =

{
1 if (ū, v̄) ∈ Ē is mapped to (u′, v′, i) ∈ E′,
0 otherwise.

The following decision variable denotes VNode mapping:

yūu′ =

{
1 if ū ∈ V̄ is mapped to u′ ∈ V ′,
0 otherwise.

Creation of new IP links is decided by:

γu′v′i =

{
1 when i-th IP link is created between u′ and v′,
0 otherwise.

Finally, a newly created IP link must be mapped to an OTN
path. This mapping is indicated by the following variable:

zu
′v′i

ûv̂ =

{
1 if (u′, v′, i) ∈ E′ is mapped to (û, v̂) ∈ Ê,
0 otherwise.

In what follows, V ′2 denotes the set of all pairs of IP nodes
(u′, v′) such that u′ 6= v′.

B. Constraints

1) VNode Mapping Constraint: (1) and (2) ensure that
each VNode is mapped to exactly one IP node according to
the location constraints. (3) restricts multiple VNodes to be
mapped on the same IP Node.

∀ū ∈ V̄ , ∀u′ ∈ V ′ : yūu′ ≤ `ūu′ (1)

∀ū ∈ V̄ :
∑

u′∈V ′

yūu′ = 1 (2)

∀u′ ∈ V ′ :
∑
ū∈V̄

yūu′ ≤ 1 (3)

2) VLink Mapping Constraints: (4) ensures that VLinks are
mapped only to existing or newly created IP links. (5) ensures
that each VLink is mapped to a non-empty subset of IP links.
We prevent the formation of loops between parallel IP links
by (6). (7) prevents overcommitment of IP link bandwidth.
Finally, (8), our flow-conservation constraint, ensures that
VLinks are mapped on a continuous IP path.

∀(ū, v̄) ∈ Ē,∀(u′, v′) ∈ V ′2, 1 ≤ i ≤ min(pu′ , pv′) :

xūv̄u′v′i ≤ γu′v′i + γv′u′i + Γu′v′i (4)

∀(ū, v̄) ∈ Ē :
∑

∀(u′,v′)∈V ′2

pu′∑
i=1

xūv̄u′v′i ≥ 1 (5)

∀(ū, v̄) ∈ Ē,∀(u′, v′) ∈ V ′2 :

pu′∑
i=1

xūv̄u′v′i ≤ 1 (6)

∀(u′, v′) ∈ V ′2, 1 ≤ i ≤ pu′ :
∑

∀(ū,v̄)∈Ē

xūv̄u′v′i × būv̄ ≤ bu′v′i

(7)

∀(ū, v̄) ∈ Ē,∀u′ ∈ V ′ :
∑
∀v′∈V ′2

min(pu′ ,pv′ )∑
i=1

(xūv̄u′v′i − xūv̄v′u′i) =

yūu′ − yv̄u′

(8)



3) IP Link Creation Constraints: (9) limits the number of
incident IP links on an IP node to be within its available
number of ports. Then, (10) ensures that a specific instance
of IP link between a pair of IP nodes is either decided by the
ILP or was part of the input, but not both at the same time.

∀u′ ∈ V ′ :
∑

∀v′∈V ′|v′ 6=u′

min(pu′ ,pv′ )∑
i=1

γu′v′i + γv′u′i + Γu′v′i ≤ pu′

(9)

∀(u′, v′) ∈ V ′2, 1 ≤ i ≤ pu′ : γu′v′i + Γu′v′i ≤ 1 (10)

4) IP-to-OTN Link Mapping Constraints: First, we ensure,
using (11), that only the newly created IP links are mapped on
the OTN layer. Then, (12) is the flow conservation constraint
that ensures continuity of the mapped OTN paths. Finally, (13)
is our capacity constraint for OTN links.

∀(u′, v′) ∈ V ′2, 1 ≤ i ≤ pu′ , (û, v̂) ∈ Ê : zu
′v′i

ûv̂ ≤ γu′v′i

(11)

∀(u′, v′) ∈ V ′2, 1 ≤ i ≤ pu′ ,∀û ∈ V̂ :∑
∀v̂∈N (û)

(zu
′v′i

ûv̂ − zu
′v′i

v̂û ) =

 γu′v′i if τu′û = 1,
−γu′v′i if τv′û = 1,

0 otherwise.
(12)

∀(û, v̂) ∈ Ê :
∑

∀(u′,v′)∈V ′2

pu′∑
i=1

zu
′v′i

ûv̂ × bu′v′i ≤ bûv̂

(13)

C. Objective Function

Our objective is to minimize the cost incurred by creating
new IP links and also the cost of provisioning bandwidth for
the VLinks. Cost for provisioning new IP links is computed
as the cost of allocating bandwidth in the OTN paths for every
new IP link. The cost of embedding a VN is computed as the
total cost of provisioning bandwidth on the IP links for the
VLinks. Our objective function is formulated as follows:

minimize
∑

∀(u′,v′)∈V ′2

pu′∑
i=1

∑
∀(û,v̂)∈Ê

zu
′v′i

ûv̂ × bu′v′i × Cûv̂

+
∑

∀(ū,v̄)∈Ē

∑
∀(u′,v′)∈V ′2

pu′∑
i=1

xūv̄u′v′i′ × būv̄ × Cu′v′i (14)

D. Hardness of OPT-MULE

Consider the case where the IP layer has sufficient capacity
to accommodate a given VN request. In this case, MULE
becomes a single-layer VNE, which has been proven to be
NP-Hard via a reduction from the multi-way separator problem
[5]. Given that single-layer VNE is an instance of MULE, by
restriction we conclude that MULE is also NP-Hard.

V. FAST -MULE: A HEURISTIC APPROACH

Given the NP-Hard nature of the multi-layer VNE prob-
lem and its intractability for large network instances, we
propose FAST-MULE, a heuristic to solve the Multi-Layer
VNE problem. We begin by explaining the challenges behind
the design of FAST-MULE in Section V-A, followed by a
description of its procedural details and an illustrative example
in Section V-B and Section V-C, respectively. Finally, we prove
in Section V-D that FAST-MULE yields the optimal solution
for star VN topologies with uniform bandwidth requirement.

A. Challenges

1) Joint Mapping in IP and OTN Layers: One challenge of
MULE is the fact that the embedding can take place in both
layers. This occurs when a VN could not be accommodated
by the existing IP links, and requires the creation of new
ones. A plausible approach is to handle the embedding at
each layer separately, i.e., start by mapping the VN on the
IP layer followed by mapping the new IP links on the OTN
layer. Clearly, such disjoint embedding is far from the optimal
as there may not be sufficient bandwidth at the OTN level to
accommodate the new IP links. To overcome this limitation,
we equip FAST-MULE with the ability to consider both layers
simultaneously when embedding a VN. This is achieved by
collapsing the IP and OTN into a single layer graph, similar
to [7]. Our collapsed graph contains all the IP and OTN nodes
and links, as well as the links connecting IP nodes to OTN
nodes. In contrast, [7] keeps the IP links and replaces the
shortest paths in OTN with potential IP links that could be
created with those paths. In our case, a VLink embedding
containing OTN links indicates creation of new IP links.

2) Joint VNode and VLink Embedding: Another challenge
is to perform simultaneous embedding of a VNode and its
incident VLinks. Embedding VNodes independently of their
incident VLinks increases the chances of VN embedding
failure. However, such joint embedding is hard to solve since
it is equivalent to solving the NP-hard Multi-commodity Un-
splittable Flow with Unknown Sources and Destinations [41].
Our goal is to equip FAST-MULE with the ability to perform
joint embedding of VNodes along with their incident VLinks.
To achieve this, we augment the collapsed graph with meta-
nodes and modify its link capacities to convert the VNode and
VLink embedding problem into a min-cost max-flow problem
that we solve using Edmonds-Karp (EK) algorithm [42]. The
flows returned by EK indicate both the VNodes and VLinks
mapping. In what follows, we elucidate the details of this
transformation along with how the embedding solution is
extracted from the flows obtained from EK.

B. Heuristic Algorithm

Alg. 1 presents a high level view of FAST-MULE. The
details of every stage are as follows:

Stage 1: Creation of a Collapsed Graph: We begin by
collapsing the OTN and IP networks to a single-layer to
achieve joint mapping at the IP and OTN layers. We keep the
residual capacities of the IP and OTN links as they are. We



Algorithm 1: Multi-Layer VNE Algorithm

Input: Ĝ = (V̂ ,Ê), G′ = (V ′,E′), Ḡ = (V̄ ,Ē)
Output: Overlay Mapping Solution M

1 function FAST-MULE()
2 /*Initialize List of Settled Nodes*/
3 S = {}
4 Step 1: Create Collapsed Graph
5 G = CreateCollapsedGraph(G′,Ĝ)
6 forall v̄ ∈ V̄ do
7 if v̄ ∈ S then
8 continue
9 S = S ∪ v̄

10 Step 2: Create Meta-Nodes
11 M.nmap = M.nmap ∪ MapNode(v̄,L(v̄))
12 for each (ū ∈ N (v̄)) do
13 if (ū in S) then
14 continue
15 if (M.nmap(ū) == NULL) then
16 V = V ∪ CreateMetaNodes(L(ū))
17 else
18 V = V ∪ CreateMetaNodes(M.nmap(ū))
19 Step 3: Create Ref-Nodes
20 V = V ∪ CreateRefNodes(V )
21 Step 4: Run Link Embedding Algorithm
22 M.emap = M.emap ∪ EdmondsKarp(G)
23 E = E ∪ GetNewIPLinks(M.emap)
24 S = S ∪ isSettled(N (v̄))
25 Return M;
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Fig. 3. Transformation from multi-layer to single-layer substrate network

assume the OTN links have significantly higher cost than the
IP links. Therefore, new IP links are created only when they
are really needed and can significantly reduce embedding cost.
Between every IP node u′ and its corresponding OTN node û,
we create pu′ links with capacity capu′ . This guarantees that
at most pu′ new IP links can be created from u′, and that the
capacity of these IP links cannot exceed the ports capacity.

Stage 2: Extraction of Star-shaped Sub-graphs from
VN: Next, we randomly pick a VNode v̄ ∈ V̄ and embed v̄
with its incident VLinks. Embedding v̄’s incident links entails
embedding its neighbors as well. This means that we are
embedding a star-shaped subgraph of the VN at each iteration.
To achieve this, we begin by mapping our current VNode
v̄, i.e., the center of the star to a random IP node in its
location constraint set (denoted as source in the following).
Then we construct a flow network in such a way that the
paths contributing to a min-cost max-flow in the flow network
correspond to the embedding of the VLinks incident to v̄.

Stage 3: Addition of Meta-Nodes: We create a flow
network by replacing every link in the collapsed graph with
directional links in both directions. Then, ∀ū ∈ N (v̄), we add
a meta-node in the flow network that we connect to every
node in L(ū). These meta-nodes are in-turn connected to a
single meta-node, that we denote as the sink. After adding the
meta-nodes we set the link capacities as follows:
• We set the flow capacity of a link (u, v) from the

collapsed graph that is not connected with any meta-

node to
buv

max∀ū∈N (v̄)(būv̄)
. Setting such capacity puts an

upper limit on the maximum number of VLinks that can
be routed through these links. Although this can lead to
resource fragmentation and in the worst case rejection of
a VN, it ensures that no capacity constraints are violated.

• We set the capacity of the links incident to a meta-node
to 1. This guarantees that at most |N (v̄)| flows can be
pushed from source to sink.

Stage 4: Addition of Referee Nodes: Location constraint
sets of different VNodes in a single VN may overlap. We
denote such VNodes as “conflicting nodes” and the inter-
section of their location constraint sets as the “conflict set”.
Every node in the conflict set is denoted as a conflict node.
When conflicting VNodes are incident to the same start node,
we end up with an augmented graph where all the nodes in
the conflict set are connected to more than one meta-node.
This is problematic because EK may end up routing multiple
VLinks via the same conflict node, thereby violating the one-
to-one node placement constraint. To resolve this issue, we
introduce “Referee Nodes” (Ref-Nodes). Ref-Nodes are meta-
nodes that are added to resolve the case of conflicting VNodes.
In presence of a conflict, conflict nodes will be connected
to more than one meta-node at the same time. Ref-Nodes
are thus introduced to break this concurrency by removing
the conflicting connections, and replacing them with a single
connection to a Ref-node. The Ref-node is subsequently
connected to all the meta-nodes of the conflicting nodes. This
ensures that at most a single VLink will be routed through



any conflict node. Further, when a conflict node is selected to
host a given VNode, no other IP nodes for the same VNode
will be selected, thereby ensuring an one-to-one assignment.

Stage 5: Execution of the Edmonds-Karp Algorithm:
Now we have an instance of the max-flow problem that we will
solve using EK. We have set the capacity of the links in the
flow network in such a way that EK can push at most |N (v̄)|
flows, indicating the VLink embedding of v̄’s incident links.
Note that the only way to push |N (v̄)| flows is by having each
flow traverse a unique meta-node to reach the sink. The VNode
embedding of v̄’s neighbors can be extracted by examining
each flow to find the incident IP node of each meta-node. If
any of the obtained flows is routed via an OTN path, then a
new IP link is established and added to the collapsed graph.
This allows subsequent iterations to use the newly created IP
link. If at any iteration EK returns less than |N (v̄)| flows, this
indicates an embedding failure, and the algorithm terminates.
Otherwise, the algorithm returns to Stage 2 and repeats until
all the VNodes are settled.

Let I be the number of iterations of Fast-MULE. During
each iteration we run the EK algorithm to find min-cost max-
flow. We replaced the augmenting path finding procedure
of EK with Dijkstra’s shortest path algorithm. Therefore,
the running time of EK becomes O(|V ||E|2 log |V |). This
renders the time complexity of our proposed approach to
O(I|V ||E|2 log |V |). If we consider the worst-case scenario
where the VN is in the form of a chain, and the nodes are
traversed sequentially, then I = |V̄ | − 1, which results in a
worst-case complexity of O(|V̄ ||V ||E|2 log |V |). Note that,
|V | and |E| represent the number of nodes and links in the
collapsed graph, respectively, where |V | = O(|V̂ | + |V ′|),
|E| = O(|Ê|+ |E′|).

C. Illustrative Example
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Fig. 4. Illustrative Example

Fig. 3(b) illustrates how the IP-over-OTN graph in Fig. 3(a)
has been converted into a collapsed IP-OTN graph. The
collapsed graph is composed of the OTN nodes, OTN links, IP
Nodes, IP-OTN links (represented by the single straight grey
lines), and IP links (represented by the dashed black lines). The
latter are represented by direct links between the OTN nodes
incident to the endpoints of each IP link. Here, we assume
that each IP node has a single residual port of capacity 20.
The numbers on each link represent the capacity of the link
followed by the cost of using this link. Observe that we set

the cost of the IP links to 1, whereas the cost of the OTN
links is set to a really high number to discourage the routing
from passing through OTN links.

Next, we showcase how FAST-MULE embeds the VN in
Fig. 2 atop the collapsed graph, as illustrated in Fig. 4. We
consider that VNode 0 is the start node. Hence, the source node
at this iteration of EK is IP node C. The sink node is meta-
node s attached to the meta-nodes α and β of VNodes 1 and 2,
respectively. Given that the maximum demand of VNode 0’s
incident links is 15, the capacity of each link in the collapsed
graph (except links incident to meta-nodes whose capacity is
fixed to 1) is replaced by the number of VLinks of capacity
15 it can accommodate. Running EK on the augmented graph
(Stage 5) returns two flows between the source node C and
the sink node s, indicated by the black and grey dotted lines in
Fig. 4. Here, we observe that EK can only route VLink (0,2)
via existing IP links (grey flow); whereas VLink (0,1) is routed
through OTN links (black flow), thereby creating a new IP link
(B,C) with capacity 20. Further, by examining the terminating
IP nodes in every flow, we identify the VNode embedding of
nodes 1 and 2 as IP nodes B and E, respectively.

D. Optimality of FAST-MULE for Star VN Topology

Recall that in Alg. 1, the joint node and link embeddings
are executed iteratively on a subgraph of the VN until all
the VNodes are settled. This iterative scheme renders a sub-
optimal solution. However, if we could perform a joint node
and link embedding on the entirety of the VN in a single
iteration, that would guarantee that the obtained solution is
indeed optimal. Such embedding is possible when all the nodes
in the VN are only connected to a single node, and if the
latter is selected as the start node, i.e., the VN topology is
a star. A star VN topology S(N) contains a center node ū
and N links connecting ū to N leaf nodes {v̄1, v̄2, . . . v̄N}.
In the sequel, we prove that Alg. 1 can find the optimal
solution in polynomial time when the VN request is a star
topology (typically used to support multi-cast services [4])
with identical bandwidth demand on all VLinks.

Theorem 1. Given a star VN topology Ḡ = S(N) with
uniform bandwidth demand β for all VLinks, Alg. 1 obtains
the optimal solution in polynomial time.

Proof. The optimal embedding of Ḡ, M∗, is the one where
the VNodes are placed on the IP nodes that provide the
lowest cost link embedding. The cost includes both the cost
of provisioning new IP links and the cost of allocating
bandwidth for VLinks. We denote the cost of M∗ as θ∗

= β

N∑
i=1

∑
u′v′∈Pūv̄i

Cu′v′ , where Pūv̄i is the embedding path

for VLink (ū, v̄i). Without loss of generality, we abstract a
newly created IP link (u′, v′)’s cost as Cu′v′ . Let M be
the solution obtained by Alg. 1. For simplicity, we assume
the central node ū has exactly one IP node in its location
constraint set. M consists of placing ū on the IP node in
its location constraint set, v′, followed by running EK from



v′ to the sink node s. EK will return the min-cost max-flow
from v′ to the sink node s. Given that the capacity of all
the incident links to s are 1, the number of flow augmenting
paths will be at most the number of leaf nodes in Ḡ and
exactly 1 unit of flow will be pushed through each of these
augmenting paths. Therefore, upon successful embedding, EK
will return N flow augmenting paths with minimum cost θ.
Now recall that the only way to push N flows towards the sink
is to traverse every meta-node once; which entails the traversal
of one node from each location constraint set. The traversed
nodes represent the VNode embedding of all the leaf nodes
in S(N). Therefore, the flow augmenting paths represent a
valid embedding of S(N). We can characterize θ as, θ =
N∑
i=1

∑
(u,v)∈Fi

Cuv × fuv , where Fi is the i-th flow augmenting

path and fuv is the flow pushed along link (u, v) in the
flow network constructed from the collapsed graph. Note that,

fuv = 1, therefore, the cost becomes, θ =

N∑
i=1

∑
(u,v)∈Fi

Cuv . If

we can prove that
N∑
i=1

∑
(u,v)∈Fi

Cuv =

N∑
i=1

∑
u′v′∈Pūv̄i

Cu′v′ then

our proof is complete. Since θ∗ is the optimal objective value,

let,
N∑
i=1

∑
(u,v)∈Fi

Cuv >

N∑
i=1

∑
u′v′∈Pūv̄i

Cu′v′ . Then it implies

that if we pushed the flows along the paths
N⋃
i=1

Pūv̄i (the

newly created IP links can be expanded to a set of OTN
links to match the paths in the collapsed graph), we would
have obtained a lower cost solution to min-cost max-flow
problem, which contradicts that θ is the minimum cost of our
min-cost max-flow problem for the converted flow network.

Therefore,
N∑
i=1

∑
(u,v)∈Fi

Cuv =

N∑
i=1

∑
u′v′∈Pūv̄i

Cu′v′ , completing

our proof.

If the central node, ū, has more than one candidate node in
its location constraint set, then running Alg. 1 |L(ū)| times is
sufficient to obtain the lowest cost mapping solution, and the
running time of Alg. 1 still remains polynomial.

VI. EVALUATION RESULTS

We evaluate our proposed solutions for MULE through
simulations. Due to the lack of publicly available multi-
layer network topologies, we generate synthetic topologies
with varying sizes for our performance evaluation. We first
describe our simulation setup in Section VI-A and the eval-
uation metrics in Section VI-B. Our evaluation is performed
based on the following scenarios: (i) cost comparison between
FAST-MULE and OPT-MULE to evaluate how well FAST-
MULE compares to the optimal, and (ii) comparison of FAST-
MULE with the state-of-the-art heuristic [7] for solving multi-
layer VNE problem.

A. Simulation Setup

1) Testbed: We have implemented OPT-MULE and FAST-
MULE using IBM ILOG CPLEX 12.5 C++ libraries and Java,
respectively. OPT-MULE was run on a machine with 4×8
core 2.4Ghz Intel Xeon E5-4640 CPU and 512GB of memory,
whereas, we used a machine with 2×8 core 2Ghz Intel Xeon
E5-2650 CPU and 256GB memory to evaluate FAST-MULE.

2) Network Topologies: As previously mentioned, we syn-
thetically generated random graphs for both SN and VN. We
generated OTNs by varying the size between 15–100 nodes.
For each OTN, we generated an IP topology with a node
count of 60% of that of the OTN and a link generation
probability chosen to match the average nodal degree of known
ISP topologies [43]. OTN links were assigned a capacity of
100Gbps, while IP links were assigned a random capacity
between 10–20Gbps. For each combination of IP and OTN,
we generated 20 VNs with 4–8 VNodes and a 0.5 probability
of having a link between every pair of VNodes.

B. Evaluation Metrics

1) Cost Ratio: This is the ratio of costs obtained by two
different approaches for solving the same problem instance.
Cost is computed using (14) and measures the relative perfor-
mance of two approaches.

2) Execution Time: The time required for an algorithm to
solve one instance of MULE.

C. Comparison of FAST-MULE with OPT-MULE
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Fig. 5. FAST-MULE to OPT-MULE Cost Ratio
1) Cost Ratio Evaluation: First, we empirically measure the

extent of additional resources allocated by FAST-MULE com-
pared to OPT-MULE. Our cost function is proportional to the
total bandwidth allocated for a VN and the new IP links.
Therefore, cost ratio of FAST-MULE to OPT-MULE gives
the extent of additional resources allocated by FAST-MULE.
Fig. 5 shows the Cumulative Distribution Function (CDF) of
cost ratio between FAST-MULE and OPT-MULE. Note that,
OPT-MULE scaled up to only 35-node OTN. To mitigate the
impact of VNode ordering during embedding, we run FAST-
MULE 75 times, each time with a different VNode embedding
order and take the best solution at the end. We observe from
the results that 50% of the VNs admitted by FAST-MULE have
an embedding cost within 10% of the optimal solution. On
average, the admitted VNs have a cost within 1.47× of that
of the optimal solution. These results are indeed promising
given that FAST-MULE achieves this while executing 440×
faster than OPT-MULE on average (10s for FAST-MULE vs.
more than an hour per VN for OPT-MULE).
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To further showcase the advantage of FAST-MULE com-
pared to OPT-MULE we plot their execution times against
varying SN size in Fig. 6. For similar problem instances in our
evaluation, FAST-MULE executed 200× to 900× faster than
OPT-MULE. Even after increasing the SN size, the execution
time of FAST-MULE remained in the order of tens of seconds.
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2) Trade-off between Cost Ratio and Execution Time: We

also evaluated the impact of the number of VNode orderings
considered for the embedding. We present the results in Fig. 7,
which shows how increasing the number of considered VNode
orderings impacts the mean cost ratio (error bars represent
the 5th and 95th percentile values) and the execution time of
FAST-MULE. Clearly, as we increase the number of consid-
ered VNode orderings, FAST-MULE to OPT-MULE cost ratio
decreases. This comes at the expense of increased execution
time, which still remains in the order of tens of seconds.
However, the gain becomes marginal as we go beyond 75
iterations. Hence, in our evaluation we opt for feeding FAST-
MULE with 75 VNode orderings and select the best solution.

D. Comparative Analysis

Now, we evaluate how well FAST-MULE performs com-
pared to the state-of-the art heuristic for multi-layer VNE [7].
We refer to [7] by D-VNE in the remaining. D-VNE con-
structs an auxiliary graph from the IP and Optical layers. The
auxiliary graph contains precomputed optical paths that can be
potentially chosen for creating new IP links. In contrast, we do
not precompute paths in the OTN layer and let the embedding
decide the best set of paths for jointly embedding VLinks
and possible new IP links. D-VNE first embeds the VNodes
using a greedy matching approach and then uses shortest path
algorithm to route the VLinks between embedded VNodes. We
modified D-VNE to fit to our context where we do not perform
wavelength allocation and omit node resource requirements.

We begin by evaluating the cost ratio of D-VNE to OPT-
MULE (Fig. 8(a)). The performance gap between D-VNE and
FAST-MULE is evident from Fig. 8(a). D-VNE could embed
VNs within 1.5× the cost of the optimal for ≈40% of the
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Fig. 8. Comparison between FAST-MULE and D-VNE [7]

cases, whereas, FAST-MULE remains within the same bound
for more than 70% of the cases. A head-to-head comparison
between D-VNE and FAST-MULE (Fig. 8(b)) shows that on
average D-VNE allocates ≈66% more resources compared to
FAST-MULE. These results reflect the advantage of a joint
embedding scheme compared to a disjoint approach adopted
by D-VNE.

VII. CONCLUSION

This paper studied MULE, i.e., multi-layer virtual network
embedding on an IP-over-OTN substrate network. We pro-
posed an ILP formulation, OPT-MULE, for optimally solving
MULE and a heuristic, FAST-MULE, to address the computa-
tional complexity of the ILP. To the best of our knowledge, this
is the first optimal solution to multi-layer VNE. Our evaluation
of FAST-MULE shows that it performs within 1.47× of the
optimal solution on average. FAST-MULE also outperformed
the state-of-the-art heuristic for multi-layer VNE and allocated
≈66% less resources on average. Finally, we also proved that
our proposed heuristic obtains optimal solution for star shaped
VNs with uniform bandwidth demand in polynomial time.

We hope that this first endeavor will stimulate further
research in multi-layer network virtualization. One possible
future direction is to consider a dynamic OTN where more
capacity can be provisioned by establishing new light paths
in the underlying DWDM. Technological constraints posed
by different optical network technologies such as wavelength
continuity of DWDM networks or sub-wavelength resource
allocation capabilities of elastic optical networks [28] are other
interesting directions worth exploring in the future.
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